Rigidly foldable origami tessellations exhibit interesting kinematic properties. Several tessellation types (most prominently Miura-ori) have shown potential for technical usage in aerospace and general lightweight construction. In addition to static (e.g., as core structures for sandwich components) and single-layer kinematic (e.g., deployable) applications, new possibilities arise from the combination of several layers of tessellations with congruent kinematics. This paper presents an analytical description of the kinematics of multilayered, or stacked, globally plane tessellations which retain rigid/isometric foldability by congruent, compatible movement.

References

References
1.
Miura
,
K.
,
1985
, “
Method of Packaging and Deployment of Large Membranes in Space
,” The Institute of Space and Astronautical Science, Technical Report No. 618.
2.
Miura
,
K.
,
2009
, “
The Science of Miura-Ori
,”
Origami4
,
R. J.
Lang
, eds.,
A. K.
Peters
, Natick, MA, pp.
87
99
.
3.
Francis
,
K. C.
,
Rupert
,
L. T.
,
Lang
,
R. J.
,
Morgan
,
D. C.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
From Crease Pattern to Product: Considerations to Engineering Origami-Adapted Designs
,”
ASME
Paper No. DETC2014-34031.
4.
Chaliulin
,
I.
,
1999
,
Technological Schemes for Sandwich Structures Production
,
KSTU,
Kazan, Russia
.
5.
Tachi
,
T.
,
2010
, “
Freeform Rigid-Foldable Structure Using Bidirectionally Flat-Foldable Planar Quadrilateral Mesh
,”
Advances in Architectural Geometry
,
Springer-Verlag
,
Vienna
, pp.
87
102
.
6.
Miura
,
K.
, and
Tachi
,
T.
,
2010
, “
Synthesis of Rigid-Foldable Cylindrical Poyhedra
,”
J. Int. Soc. Interdiscip. Study Symmetry (ISIS-Symmetry)
,
2010
(
1–4
), pp.
204
213
.
7.
Schenk
,
M.
, and
Guest
,
S. D.
,
2013
, “
Geometry of Miura-Folded Metamaterials
,”
PNAS
,
110
(
9
), pp.
3276
3281
.
8.
Sicong
,
L.
,
Weilin
,
L.
,
Yan
,
C.
, and
Guoxing
,
L.
,
2014
, “
Deployable Prismatic Structures With Rigid Origami Patterns
,”
ASME
Paper No. DETC2014-34567.
9.
Gattas
,
J. M.
, and
You
,
Z.
,
2014
, “
Design and Analysis of Morphing Folded Shell Structures
,”
6OSME Abstracts
,
Tokyo, Japan
.
10.
Ho
,
J.
, and
You
,
Z.
,
2016
,
Thin-Walled Deployable Grid Structures
, Origami6; Part 2,
K.
Miura
,
T.
Kawasaki
,
T.
Tachi
,
R.
Uehara
,
R. J.
Lang
, and
P.
Wang-Iverson
, eds., American Mathematical Society (AMS).
11.
Peng
,
R.
, and
Chen
,
Y.
,
2014
, “
The Metamaterial Generated From Rigid-Origami Pattern
,”
6OSME Abstracts
,
Tokyo, Japan
.
12.
Klett
,
Y.
,
2013
, “
Auslegung Multifunktionaler Isometrischer Faltstrukturen für den Technischen Einsatz
,” Ph.D. thesis, Universität Stuttgart, Stuttgart, Germany.
13.
Klett
,
Y.
, and
Drechsler
,
K.
,
2011
, “
Designing Technical Tessellations
,”
Origami5
,
P.
Wang-Iverson
,
R. J.
Lang
, and
M.
Yim
, eds.,
CRC Press
,
Boca Raton, FL
, pp.
305
322
.
14.
Edmondson
,
B. J.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
An Offset Construction Technique for Thick Rigid Foldable Origami
,”
6OSME Abstracts
, Tokyo,
Japan
.
15.
Tachi
,
T.
,
2011
, “
Rigid-Foldable Thick Origami
,”
Origami5,
P.
Wang-Iverson
,
R. J.
Lang
, and
M.
Yim
, eds.,
CRC Press
,
Boca Raton, FL
, pp.
253
263
.
16.
Klett
,
Y.
,
2013
, “
Realtime Rigid Folding Algorithm for Quadrilateral-Based 1-DOF Tessellations
,”
ASME
Paper No. DETC2013-12659.
17.
Klett
,
Y.
,
Grzeschik
,
M.
, and
Middendorf
,
P.
,
2016
,
Comparison of Compressive Properties of Periodic Non-Flat Tessellations
, Origami6; Part 2,
K.
Miura
,
T.
Kawasaki
,
T.
Tachi
,
R.
Uehara
,
R. J.
Lang
, and
P.
Wang-Iverson
, eds., American Mathematical Society (AMS).
18.
Barreto
,
P. T.
,
1997
, “
Lines Meeting on a Surface: The “MARS” Paperfolding
,”
Origami Science & Art: Proceedings of the Second International Meeting of Origami Science and Scientific Origami
, pp.
343
359
.
You do not currently have access to this content.