Rigidly foldable origami tessellations exhibit interesting kinematic properties. Several tessellation types (most prominently Miura-ori) have shown potential for technical usage in aerospace and general lightweight construction. In addition to static (e.g., as core structures for sandwich components) and single-layer kinematic (e.g., deployable) applications, new possibilities arise from the combination of several layers of tessellations with congruent kinematics. This paper presents an analytical description of the kinematics of multilayered, or stacked, globally plane tessellations which retain rigid/isometric foldability by congruent, compatible movement.
Issue Section:
Technical Brief
References
1.
Miura
, K.
, 1985
, “Method of Packaging and Deployment of Large Membranes in Space
,” The Institute of Space and Astronautical Science, Technical Report No. 618.2.
Miura
, K.
, 2009
, “The Science of Miura-Ori
,” Origami4
, R. J.
Lang
, eds., A. K.
Peters
, Natick, MA, pp. 87
–99
.3.
Francis
, K. C.
, Rupert
, L. T.
, Lang
, R. J.
, Morgan
, D. C.
, Magleby
, S. P.
, and Howell
, L. L.
, 2014
, “From Crease Pattern to Product: Considerations to Engineering Origami-Adapted Designs
,” ASME
Paper No. DETC2014-34031.4.
Chaliulin
, I.
, 1999
, Technological Schemes for Sandwich Structures Production
, KSTU,
Kazan, Russia
.5.
Tachi
, T.
, 2010
, “Freeform Rigid-Foldable Structure Using Bidirectionally Flat-Foldable Planar Quadrilateral Mesh
,” Advances in Architectural Geometry
, Springer-Verlag
, Vienna
, pp. 87
–102
.6.
Miura
, K.
, and Tachi
, T.
, 2010
, “Synthesis of Rigid-Foldable Cylindrical Poyhedra
,” J. Int. Soc. Interdiscip. Study Symmetry (ISIS-Symmetry)
, 2010
(1–4
), pp. 204
–213
.7.
Schenk
, M.
, and Guest
, S. D.
, 2013
, “Geometry of Miura-Folded Metamaterials
,” PNAS
, 110
(9
), pp. 3276
–3281
.8.
Sicong
, L.
, Weilin
, L.
, Yan
, C.
, and Guoxing
, L.
, 2014
, “Deployable Prismatic Structures With Rigid Origami Patterns
,” ASME
Paper No. DETC2014-34567.9.
Gattas
, J. M.
, and You
, Z.
, 2014
, “Design and Analysis of Morphing Folded Shell Structures
,” 6OSME Abstracts
, Tokyo, Japan
.10.
Ho
, J.
, and You
, Z.
, 2016
, Thin-Walled Deployable Grid Structures
, Origami6; Part 2, K.
Miura
, T.
Kawasaki
, T.
Tachi
, R.
Uehara
, R. J.
Lang
, and P.
Wang-Iverson
, eds., American Mathematical Society (AMS).11.
Peng
, R.
, and Chen
, Y.
, 2014
, “The Metamaterial Generated From Rigid-Origami Pattern
,” 6OSME Abstracts
, Tokyo, Japan
.12.
Klett
, Y.
, 2013
, “Auslegung Multifunktionaler Isometrischer Faltstrukturen für den Technischen Einsatz
,” Ph.D. thesis, Universität Stuttgart, Stuttgart, Germany.13.
Klett
, Y.
, and Drechsler
, K.
, 2011
, “Designing Technical Tessellations
,” Origami5
, P.
Wang-Iverson
, R. J.
Lang
, and M.
Yim
, eds., CRC Press
, Boca Raton, FL
, pp. 305
–322
.14.
Edmondson
, B. J.
, Lang
, R. J.
, Magleby
, S. P.
, and Howell
, L. L.
, 2014
, “An Offset Construction Technique for Thick Rigid Foldable Origami
,” 6OSME Abstracts
, Tokyo, Japan
.15.
Tachi
, T.
, 2011
, “Rigid-Foldable Thick Origami
,” Origami5,
P.
Wang-Iverson
, R. J.
Lang
, and M.
Yim
, eds., CRC Press
, Boca Raton, FL
, pp. 253
–263
.16.
Klett
, Y.
, 2013
, “Realtime Rigid Folding Algorithm for Quadrilateral-Based 1-DOF Tessellations
,” ASME
Paper No. DETC2013-12659.17.
Klett
, Y.
, Grzeschik
, M.
, and Middendorf
, P.
, 2016
, Comparison of Compressive Properties of Periodic Non-Flat Tessellations
, Origami6; Part 2, K.
Miura
, T.
Kawasaki
, T.
Tachi
, R.
Uehara
, R. J.
Lang
, and P.
Wang-Iverson
, eds., American Mathematical Society (AMS).18.
Barreto
, P. T.
, 1997
, “Lines Meeting on a Surface: The “MARS” Paperfolding
,” Origami Science & Art: Proceedings of the Second International Meeting of Origami Science and Scientific Origami
, pp. 343
–359
.Copyright © 2016 by ASME
You do not currently have access to this content.