Self-folding converts two-dimensional (2D) sheets into three-dimensional (3D) objects in a hands-free manner. This paper demonstrates a simple approach to self-fold commercially available, millimeter-thick thermoplastic polymer sheets. The process begins by first stretching poly(methyl methacrylate) (PMMA), polystyrene (PS), or polycarbonate (PC) sheets using an extensometer at elevated temperatures close to the glass transition temperature (Tg) of each sheet. Localizing the strain to a small strip creates a “hinge,” which folds in response to asymmetric heating of the sheet. Although there are a number of ways to supply heat, here a heat gun delivers heat to one side of the hinge to create the necessary temperature gradient through the polymer sheet. When the local temperature exceeds the Tg of the polymer, the strain in the hinged region relaxes. Because strain relaxation occurs gradually across the sheet thickness, the polymer sheet folds in the direction toward the heating source. A simple geometric model predicts the dihedral angle of the sheet based on the thickness of the sheet and width of the hinge. This paper reports for the first time that this approach to folding works for a variety of thermoplastics using sheets that are significantly thicker (∼10 times) than those reported previously.

References

References
1.
Taylor
,
D.
,
Dyer
,
D.
,
Lew
,
V.
, and
Khine
,
M.
,
2010
, “
Shrink Film Patterning by Craft Cutter: Complete Plastic Chips With High Resolution/High-Aspect Ratio Channel
,”
Lab. Chip
,
10
(
18
), pp.
2472
2475
.
2.
Chen
,
C.-S.
,
Breslauer
,
D. N.
,
Luna
,
J. I.
,
Grimes
,
A.
,
Chin
,
W.
,
Lee
,
L. P.
, and
Khine
,
M.
,
2008
, “
Shrinky-Dink Microfluidics: 3D Polystyrene Chips
,”
Lab. Chip
,
8
(
4
), pp.
622
624
.
3.
Lin
,
S.
,
Lee
,
E. K.
,
Nguyen
,
N.
, and
Khine
,
M.
,
2014
, “
Thermally-Induced Miniaturization for Micro- and Nanofabrication: Progress and Updates
,”
Lab. Chip
,
14
(
18
), pp.
3475
3488
.
4.
Grimes
,
A.
,
Breslauer
,
D. N.
,
Long
,
M.
,
Pegan
,
J.
,
Lee
,
L. P.
, and
Khine
,
M.
,
2008
, “
Shrinky-Dink Microfluidics: Rapid Generation of Deep and Rounded Patterns
,”
Lab. Chip
,
8
(
1
), pp.
170
172
.
5.
Hayes
,
G. J.
,
Liu
,
Y.
,
Genzer
,
J.
,
Lazzi
,
G.
, and
Dickey
,
M. D.
,
2014
, “
Self-Folding Origami Microstrip Antennas
,”
IEEE Trans. Antennas Propag.
,
62
(
10
), pp.
5416
5419
.
6.
Fernandes
,
R.
, and
Gracias
,
D. H.
,
2012
, “
Self-Folding Polymeric Containers for Encapsulation and Delivery of Drugs
,”
Adv. Drug Deliv. Rev.
,
64
(
14
), pp.
1579
1589
.
7.
Azam
,
A.
,
Laflin
,
K. E.
,
Jamal
,
M.
,
Fernandes
,
R.
, and
Gracias
,
D. H.
,
2011
, “
Self-Folding Micropatterned Polymeric Containers
,”
Biomed. Microdevices
,
13
(
1
), pp.
51
58
.
8.
Felton
,
S.
,
Tolley
,
M.
,
Demaine
,
E.
,
Rus
,
D.
, and
Wood
,
R.
,
2014
, “
A Method for Building Self-Folding Machines
,”
Science
,
345
(
6197
), pp.
644
646
.
9.
Silverberg
,
J. L.
,
Evans
,
A. A.
,
McLeod
,
L.
,
Hayward
,
R. C.
,
Hull
,
T.
,
Santangelo
,
C. D.
, and
Cohen
,
I.
,
2014
, “
Using Origami Design Principles to Fold Reprogrammable Mechanical Metamaterials
,”
Science
,
345
(
6197
), pp.
647
650
.
10.
Bothe
,
M.
, and
Pretsch
,
T.
,
2013
, “
Bidirectional Actuation of a Thermoplastic Polyurethane Elastomer
,”
J. Mater. Chem. A
,
1
(
46
), pp.
14491
14497
.
11.
An
,
B.
,
Miyashita
,
S.
,
Tolley
,
M. T.
,
Aukes
,
D. M.
,
Meeker
,
L.
,
Demaine
,
E. D.
,
Demaine
,
M. L.
,
Wood
,
R. J.
, and
Rus
,
D.
,
2014
, “
An End-to-End Approach to Making Self-Folded 3D Surface Shapes by Uniform Heating
,”
IEEE Conference Robotics and Automation
(
ICRA
), Hong Kong, May 31-June 7, pp.
1466
1473
.
12.
Liu
,
Y.
,
Boyles
,
J. K.
,
Genzer
,
J.
, and
Dickey
,
M. D.
,
2012
, “
Self-Folding of Polymer Sheets Using Local Light Absorption
,”
Soft Matter
,
8
(
6
), pp.
1764
1769
.
13.
Beblo
,
R. V.
, and
Weiland
,
L. M.
,
2009
, “
Light Activated Shape Memory Polymer Characterization
,”
ASME J. Appl. Mech.
,
76
(
1
), p.
011008
.
14.
Habault
,
D.
,
Zhang
,
H.
, and
Zhao
,
Y.
,
2013
, “
Light-Triggered Self-Healing and Shape-Memory Polymers
,”
Chem. Soc. Rev.
,
42
(
17
), pp.
7244
7256
.
15.
Lendlein
,
A.
,
Jiang
,
H.
,
Juenger
,
O.
, and
Langer
,
R.
,
2005
, “
Light-Induced Shape-Memory Polymers
,”
Nature
,
434
(
7035
), pp.
879
882
.
16.
Ryu
,
J.
,
D'Amato
,
M.
,
Cui
,
X.
,
Long
,
K. N.
,
Qi
,
H. J.
, and
Dunn
,
M. L.
,
2012
, “
Photo-Origami—Bending and Folding Polymers With Light
,”
Appl. Phys. Lett.
,
100
(
16
), p.
161908
.
17.
Agrawal
,
A.
,
Yun
,
T.
,
Pesek
,
S. L.
,
Chapman
,
W. G.
, and
Verduzco
,
R.
,
2014
, “
Shape-Responsive Liquid Crystal Elastomer Bilayers
,”
Soft Matter
,
10
(
9
), pp.
1411
1415
.
18.
Allensworth
,
J. R.
,
Liu
,
Y.
,
Braun
,
H.
,
Genzer
,
J.
, and
Dickey
,
M. D.
, “
In-Plane Deformation of Shape Memory Polymer Sheets Programmed Using Only Scissors
,”
Polymer
,
55
(
23
), pp.
5948
5952
.
19.
Andres
,
C. M.
,
Zhu
,
J.
,
Shyu
,
T.
,
Flynn
,
C.
, and
Kotov
,
N. A.
,
2014
, “
Shape-Morphing Nanocomposite Origami
,”
Langmuir
,
30
(
19
), pp.
5378
5385
.
20.
Behl
,
M.
,
Zotzmann
,
J.
, and
Lendlein
,
A.
,
2010
, “
Shape-Memory Polymers and Shape-Changing Polymers
,”
Shape-Memory Polymers
,
A.
Lendlein
, ed.,
Springer
,
Berlin/Heidelberg
, pp.
1
40
.
21.
Chung
,
T.
,
Romo-Uribe
,
A.
, and
Mather
,
P. T.
,
2008
, “
Two-Way Reversible Shape Memory in a Semicrystalline Network
,”
Macromolecules
,
41
(
1
), pp.
184
192
.
22.
Ge
,
Q.
,
Dunn
,
C. K.
,
Qi
,
H. J.
, and
Dunn
,
M. L.
,
2014
, “
Active Origami by 4D printing
,”
Smart Mater. Struct.
,
23
(
9
), p.
094007
.
23.
Nguyen
,
T. D.
,
Jerry Qi
,
H.
,
Castro
,
F.
, and
Long
,
K. N.
,
2008
, “
A Thermoviscoelastic Model for Amorphous Shape Memory Polymers: Incorporating Structural and Stress Relaxation
,”
J. Mech. Phys. Solids
,
56
(
9
), pp.
2792
2814
.
24.
Harris
,
R. D.
,
Auletta
,
J. T.
,
Motlagh
,
S. A. M.
,
Lawless
,
M. J.
,
Perri
,
N. M.
,
Saxena
,
S.
,
Weiland
,
L. M.
,
Waldeck
,
D. H.
,
Clark
,
W. W.
, and
Meyer
,
T. Y.
,
2013
, “
Chemical and Electrochemical Manipulation of Mechanical Properties in Stimuli-Responsive Copper-Cross-Linked Hydrogels
,”
ACS Macro Lett.
,
2
(
12
), pp.
1095
1099
.
25.
Ahmad
,
M.
,
Luo
,
J.
, and
Miraftab
,
M.
,
2012
, “
Feasibility Study of Polyurethane Shape-Memory Polymer Actuators for Pressure Bandage Application
,”
Sci. Technol. Adv. Mater.
,
13
(
1
), p.
015006
.
26.
Qi
,
H. J.
,
Nguyen
,
T. D.
,
Castro
,
F.
,
Yakacki
,
C. M.
, and
Shandas
,
R.
,
2008
, “
Finite Deformation Thermo-Mechanical Behavior of Thermally Induced Shape Memory Polymers
,”
J. Mech. Phys. Solids
,
56
(
5
), pp.
1730
1751
.
27.
Diani
,
J.
,
Liu
,
Y.
, and
Gall
,
K.
,
2006
, “
Finite Strain 3D Thermoviscoelastic Constitutive Model for Shape Memory Polymers
,”
Polym. Eng. Sci.
,
46
(
4
), pp.
486
492
.
28.
Leng
,
J.
,
Wu
,
X.
, and
Liu
,
Y.
,
2009
, “
Infrared Light-Active Shape Memory Polymer Filled With Nanocarbon Particles
,”
J. Appl. Polym. Sci.
,
114
(
4
), pp.
2455
2460
.
29.
Lee
,
K. M.
,
Koerner
,
H.
,
Vaia
,
R. A.
,
Bunning
,
T. J.
, and
White
,
T. J.
,
2011
, “
Light-Activated Shape Memory of Glassy, Azobenzene Liquid Crystalline Polymer Networks
,”
Soft Matter
,
7
(
9
), pp.
4318
4324
.
30.
Behl
,
M.
,
Razzaq
,
M. Y.
, and
Lendlein
,
A.
,
2010
, “
Multifunctional Shape-Memory Polymers
,”
Adv. Mater.
,
22
(
31
), pp.
3388
3410
.
31.
Berg
,
G. J.
,
McBride
,
M. K.
,
Wang
,
C.
, and
Bowman
,
C. N.
,
2014
, “
New Directions in the Chemistry of Shape Memory Polymers
,”
Polymer
,
55
(
23
), pp.
5849
5872
.
32.
Jiang
,
H. Y.
,
Kelch
,
S.
, and
Lendlein
,
A.
,
2006
, “
Polymers Move in Response to Light
,”
Adv. Mater.
,
18
(
11
), pp.
1471
1475
.
33.
Zhang
,
H.
, and
Zhao
,
Y.
,
2013
, “
Polymers With Dual Light-Triggered Functions of Shape Memory and Healing Using Gold Nanoparticles
,”
ACS Appl. Mater. Interfaces
,
5
(
24
), pp.
13069
13075
.
34.
Zeng
,
C.
,
Seino
,
H.
,
Ren
,
J.
, and
Yoshie
,
N.
,
2014
, “
Polymers With Multishape Memory Controlled by Local Glass Transition Temperature
,”
ACS Appl. Mater. Interfaces
,
6
(
4
), pp.
2753
2758
.
35.
Behl
,
M.
,
Kratz
,
K.
,
Zotzmann
,
J.
,
Nöchel
,
U.
, and
Lendlein
,
A.
,
2013
, “
Reversible Bidirectional Shape-Memory Polymers
,”
Adv. Mater.
,
25
(
32
), pp.
4466
4469
.
36.
Higgins
,
M. J.
,
Grosse
,
W.
,
Wagner
,
K.
,
Molino
,
P. J.
, and
Wallace
,
G. G.
,
2011
, “
Reversible Shape Memory of Nanoscale Deformations in Inherently Conducting Polymers Without Reprogramming
,”
J. Phys. Chem. B
,
115
(
13
), pp.
3371
3378
.
37.
Liu
,
C.
,
Qin
,
H.
, and
Mather
,
P. T.
,
2007
, “
Review of Progress in Shape-Memory Polymers
,”
J. Mater. Chem.
,
17
(
16
), pp.
1543
1558
.
38.
Lendlein
,
A.
, and
Sauter
,
T.
,
2013
, “
Shape-Memory Effect in Polymers
,”
Macromol. Chem. Phys.
,
214
(
11
), pp.
1175
1177
.
39.
Mather
,
P. T.
,
Luo
,
X. F.
, and
Rousseau
,
I. A.
,
2009
, “
Shape Memory Polymer Research
,”
Annu. Rev. Mater. Res.
,
39
(
1
), pp.
445
471
.
40.
Leng
,
J.
,
Lan
,
X.
,
Liu
,
Y.
, and
Du
,
S.
,
2011
, “
Shape-Memory Polymers and Their Composites: Stimulus Methods and Applications
,”
Prog. Mater. Sci.
,
56
(
7
), pp.
1077
1135
.
41.
Kunzelman
,
J.
,
Chung
,
T.
,
Mather
,
P. T.
, and
Weder
,
C.
,
2008
, “
Shape Memory Polymers With Built-In Threshold Temperature Sensors
,”
J. Mater. Chem.
,
18
(
10
), pp.
1082
1086
.
42.
Behl
,
M.
,
Kratz
,
K.
,
Noechel
,
U.
,
Sauter
,
T.
, and
Lendlein
,
A.
,
2013
, “
Temperature-Memory Polymer Actuators
,”
Proc. Natl. Acad. Sci.
,
110
(
31
), pp.
12555
12559
.
43.
Westbrook
,
K. K.
,
Mather
,
P. T.
,
Parakh
,
V.
,
Dunn
,
M. L.
,
Ge
,
Q.
,
Lee
,
B. M.
, and
Qi
,
H. J.
,
2011
, “
Two-Way Reversible Shape Memory Effects in a Free-Standing Polymer Composite
,”
Smart Mater. Struct.
,
20
(
6
), p.
065010
.
44.
Pandini
,
S.
,
Passera
,
S.
,
Messori
,
M.
,
Paderni
,
K.
,
Toselli
,
M.
,
Gianoncelli
,
A.
,
Bontempi
,
E.
, and
Riccò
,
T.
,
2012
, “
Two-Way Reversible Shape Memory Behaviour of Crosslinked Poly(ε-Caprolactone)
,”
Polymer
,
53
(
9
), pp.
1915
1924
.
45.
Meng
,
H.
,
Mohamadian
,
H.
,
Stubblefield
,
M.
,
Jerro
,
D.
,
Ibekwe
,
S.
,
Pang
,
S.-S.
, and
Li
,
G.
,
2013
, “
Various Shape Memory Effects of Stimuli-Responsive Shape Memory Polymers
,”
Smart Mater. Struct.
,
22
(
9
), p.
093001
.
46.
Davis
,
D.
,
Mailen
,
R.
,
Dickey
,
M.
, and
Genzer
,
J.
,
2015
, “
Self-Folding of Polymer Sheets Using Microwaves and Graphene Ink
,”
RSC Adv.
,
5
, pp.
89254
89261
.
47.
Liu
,
Y.
,
Miskiewicz
,
M.
,
Escuti
,
M. J.
,
Genzer
,
J.
, and
Dickey
,
M. D.
,
2014
, “
Three-Dimensional Folding of Pre-Strained Polymer Sheets Via absorption of Laser Light
,”
J. Appl. Phys.
,
115
(
20
), p.
204911
.
48.
Felton
,
S. M.
,
Tolley
,
M. T.
,
Onal
,
C. D.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2013
, “
Robot Self-Assembly by Folding: A Printed Inchworm Robot
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Karlsruhe, Germany, May 6–10, pp.
277
282
.
49.
Liu
,
Y.
,
Mailen
,
R.
,
Zhu
,
Y.
,
Dickey
,
M. D.
, and
Genzer
,
J.
,
2014
, “
Simple Geometric Model to Describe Self-Folding of Polymer Sheets
,”
Phys. Rev. E
,
89
(
4
), p.
042601
.
50.
Starkova
,
O.
, and
Aniskevich
,
A. N.
,
2010
, “
Poisson's Ratio and the Incompressibility Relation for Various Strain Measures With the Example of a Silica-Filled SBR Rubber in Uniaxial Tension Tests
,”
Polym. Test.
29
(
3
), pp.
310
318
.
51.
Mailen
,
R.
,
Liu
,
Y.
,
Dickey
,
M. D.
,
Zikry
,
M.
, and
Genzer
,
J.
,
2015
, “
Modeling of Shape Memory Polymer Sheets That Self-Fold in Response to Localized Heating
,”
Soft Matter
,
11
(
39
), pp.
7827
7834
.
52.
Brandrup
,
J.
,
Immergut
,
E. H.
, and
Grulke
,
E. A.
,
2003
,
Polymer Handbook
,
Wiley
,
New York
.
53.
Wypych
,
G.
,
2012
,
Handbook of Polymers
,
ChemTec Publishing
,
Toronto, ON
.
54.
Jamal
,
M.
,
Zarafshar
,
A. M.
, and
Gracias
,
D. H.
,
2011
, “
Differentially Photo-Crosslinked Polymers Enable Self-Assembling Microfluidics
,”
Nat. Comms.
2
(
527
) pp.
1
6
.
You do not currently have access to this content.