This paper presents a novel design of extensible continuum robots in light of origami-inspired folding techniques. The design starts from a modularized crease pattern, which consists of two triangular bases and three waterbomb bases, and generates a folding process for creating an origami waterbomb parallel structure. This further progresses to generating a compliant module with the origami parallel structure and a helical compression spring. A novel extensible continuum robot with the integrated compliant parallel modules is then proposed to imitate not only the bending motion but also the contraction of continuum creatures in nature. Mapping the origami parallel structure to an equivalent kinematic model, the motion characteristics of the origami structure are explored in terms of kinematic principles. The analysis reveals the mixed rotational and translational motion of the origami parallel module and the virtual axes for yaw and pitch motions. Following kinematics of the proposed continuum robot and features of the integrated helical spring in each module, three actuation schemes and resultant typical working phases with a tendon-driven system are presented. The design and analysis are then followed by a prototype of the extensible continuum robot with six integrated compliant modules connected in serial. The functionality of the proposed continuum robot with the origami parallel structure as its skeleton and the helical springs as the compliant backbone is validated by experimental results.

References

References
1.
Robinson
,
G.
, and
Davies
,
J. B. C.
,
1999
, “
Continuum Robots—A State of the Art
,”
IEEE International Conference on Robotics and Automation
,
Detroit, MI
, May 10–15, Vol.
4
, pp.
2849
2854
.
2.
Webster
,
R. J.
, and
Jones
,
B. A.
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1661
1683
.
3.
Wilson
,
J. F.
, and
Mahajan
,
U.
,
1989
, “
The Mechanics and Positioning of Highly Flexible Manipulator Limbs
,”
ASME J. Mech. Des.
,
111
(
2
), pp.
232
237
.
4.
Chirikjian
,
G. S.
, and
Burdick
,
J. W.
,
1994
, “
A Hyper-Redundant Manipulator
,”
IEEE Rob. Autom. Mag.
,
1
(
4
), pp.
22
29
.
5.
Sujan
,
V. A.
, and
Dubowsky
,
S.
,
2004
, “
Design of a Lightweight Hyper-Redundant Deployable Binary Manipulator
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
29
39
.
6.
Hannan
,
M. W.
, and
Walker
,
I. D.
,
2000
, “
Analysis and Initial Experiments for a Novel Elephant's Trunk Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Takamatsu, Japan
, Oct. 31–Nov. 5, Vol.
1
, pp.
330
337
.
7.
Hannan
,
M. W.
, and
Walker
,
I. D.
,
2003
, “
Kinematics and the Implementation of an Elephant's Trunk Manipulator and Other Continuum Style Robots
,”
J. Rob. Syst.
,
20
(
2
), pp.
45
63
.
8.
William
,
M.
, and
Walker
,
I. D.
,
2008
, “
Octopus-Inspired Grasp-Synergies for Continuum Manipulators
,”
IEEE International Conference on Robotics and Biomimetics
,
Bangkok, Thailand
, Feb. 22–25, pp.
945
950
.
9.
Yoon
,
H. S.
, and
Yi
,
B. J.
,
2009
, “
A 4-DOF Flexible Continuum Robot Using a Spring Backbone
,”
IEEE International Conference on Mechatronics and Automation
,
Changchun, China
, Aug. 9–12, pp.
1249
1254
.
10.
Transeth
,
A. A.
,
Pettersen
,
K. Y.
, and
Liljebäck
,
P.
,
2009
, “
A Survey on Snake Robot Modeling and Locomotion
,”
Robotica
,
27
(
7
), pp.
999
1015
.
11.
Hirose
,
S.
,
1993
,
Biologically Inspired Robots: Snake-Like Locomotors and Manipulators
,
Oxford University Press
,
Oxford, UK
.
12.
Klaassen
,
B.
, and
Paap
,
K. L.
,
1999
, “
GMD-SNAKE2: A Snake-Like Robot Driven by Wheels and a Method for Motion Control
,”
IEEE
International Conference on Robotics and Automation
, Detroit, MI, Vol.
4
, pp.
3014
3019
.
13.
Nilsson
,
M.
,
1997
, “
Snake Robot Free Climbing
,”
IEEE
International Conference on Robotics and Automation
, Albuquerque, NM, Apr. 20–25, Vol.
4
, pp.
3415
3420
.
14.
Wright
,
C.
,
Johnson
,
A.
,
Peck
,
A.
,
McCord
,
Z.
,
Naaktgeboren
,
A.
,
Gianfortoni
,
P.
, and
Choset
,
H.
,
2007
, “
Design of a Modular Snake Robot
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, San Diego, CA, Oct. 29–Nov. 2, pp.
2609
2614
.
15.
Koh
,
J.
, and
Cho
,
K.
,
2010
, “
Omegabot: Crawling Robot Inspired by Ascotis Selenaria
,”
IEEE International Conference on Robotics and Automation (ICRA)
, pp.
109
114
.
16.
Koh
,
J.
, and
Cho
,
K.
,
2013
, “
Omega-Shaped Inchworm-Inspired Crawling Robot With Large-Index-and-Pitch (LIP) SMA Spring Actuators
,”
IEEE/ASME Trans. Mechatronics
,
18
(
2
), pp.
419
429
.
17.
Onal
,
C. D.
,
Wood
,
R. J.
, and
Rus
,
D.
,
2013
, “
An Origami-Inspired Approach to Worm Robots
,”
IEEE/ASME Trans. Mechatronics
,
18
(
2
), pp.
430
438
.
18.
Zhang
,
K.
,
Qiu
,
C.
, and
Dai
,
J. S.
,
2015
, “
Helical Kirigami-Enabled Centimeter-Scale Worm Robot With Shape-Memory-Alloy Linear Actuators
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021014
.
19.
Vander Hoff
,
E.
,
Jeong
,
D.
, and
Lee
,
K.
,
2014
, “
OrigamiBot-I: A Thread-Actuated Origami Robot for Manipulation and Locomotion
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Chicago, IL, Sept. 14–18, pp.
1421
1426
.
20.
Godage
,
I. S.
,
Nanayakkara
,
T.
, and
Caldwell
,
D. G.
,
2012
, “
Locomotion With Continuum Limbs
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Vilamoura, Oct. 7–12, pp.
293
298
.
21.
Lim
,
G.
,
Minami
,
K.
,
Yamamoto
,
K.
,
Sugihara
,
M.
,
Uchiyama
,
M.
, and
Esashi
,
M.
,
1996
, “
Multi-Link Active Catheter Snake-Like Motion
,”
Robotica
,
14
(
5
), pp.
499
506
.
22.
Camarillo
,
D. B.
,
Milne
,
C. F.
,
Carlson
,
C. R.
,
Zinn
,
M. R.
, and
Salisbury
,
J. K.
,
2008
, “
Mechanics Modeling of Tendon-Driven Continuum Manipulators
,”
IEEE Trans. Rob.
,
24
(
6
), pp.
1262
1273
.
23.
Ota
,
T.
,
Degani
,
A.
,
Schwartzman
,
D.
,
Zubiate
,
B.
,
McGarvey
,
J.
,
Choset
,
H.
, and
Zenati
,
M. A.
,
2009
, “
A Highly Articulated Robotic Surgical System for Minimally Invasive Surgery
,”
Ann. Thorac. Surg.
,
87
(
4
), pp.
1253
1256
.
24.
Shang
,
J.
,
Payne
,
C. J.
,
Clark
,
J.
,
Noonan
,
D. P.
,
Kwok
,
K. W.
,
Darzi
,
A.
, and
Yang
,
G. Z.
,
2012
, “
Design of a Multitasking Robotic Platform With Flexible Arms and Articulated Head for Minimally Invasive Surgery
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Vilamoura, Oct. 7–12, pp.
1988
1993
.
25.
Tognarelli
,
S.
,
Salerno
,
M.
,
Tortora
,
G.
,
Quaglia
,
C.
,
Dario
,
P.
, and
Menciassi
,
A.
,
2012
, “
An Endoluminal Robotic Platform for Minimally Invasive Surgery
,”
4th IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics
(
BioRob
), Rome, June 24–27, pp.
7
12
.
26.
Vitiello
,
V.
,
Lee
,
S. L.
,
Cundy
,
T. P.
, and
Yang
,
G. Z.
,
2013
, “
Emerging Robotic Platforms for Minimally Invasive Surgery
,”
IEEE Rev. Biomed. Eng.
,
6
, pp.
111
126
.
27.
Qi
,
P.
,
Qiu
,
C.
,
Liu
,
H.
,
Dai
,
J. S.
,
Seneviratne
,
L.
, and
Althoefer
,
K.
,
2014
, “
A Novel Continuum-Style Robot With Multilayer Compliant Modules
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
,
Chicago, IL
, Sept. 14–18, pp.
3175
3180
.
28.
Kuo
,
C. H.
, and
Dai
,
J. S.
, 2014, “
Kinematics of a fully-decoupled remote center-of-motion parallel manipulator for minimally invasive surgery
,”
Journal of Medical Devices, Trans. ASME
,
6
(
2
), p.
021008
.
29.
Onal
,
C. D.
,
Wood
,
R. J.
, and
Rus
,
D.
,
2011
, “
Towards Printable Robotics: Origami-Inspired Planar Fabrication of Three-Dimensional Mechanisms
,”
IEEE International Conference on Robotics and Automation
(
ICRA
),
Shanghai, China
, May 9–13, pp.
4608
4613
.
30.
Gafford
,
J. B.
,
Kesner
,
S. B.
,
Wood
,
R. J.
, and
Walsh
,
C. J.
,
2013
, “
Force-Sensing Surgical Grasper Enabled by Pop-Up Book MEMS
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
),
Tokyo, Japan
, Nov. 3–7, pp.
2552
2558
.
31.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
.
32.
Lang
,
R. J.
,
2011
,
Origami Design Secrets: Mathematical Methods for an Ancient Art
,
CRC Press
,
Boca Raton, FL
.
33.
Hoffmann
,
R.
,
2001
, “
Airbag Folding: Origami Design Applied to an Engineering Problem
,”
3rd International Meeting of Origami Science, Math, and Education
,
Asilomar, CA
, Mar. 9–11.
34.
Miura
,
K.
,
1989
, “
A Note on Intrinsic Geometry of Origami
,”
Research of Pattern Formation
,
First International Meeting of Origami Science and Technology
,
Ferrara, Italy
, Dec. 6–7, pp.
91
102
.
35.
Dai
,
J. S.
, and
Rees Jones
,
J.
,
2002
, “
Kinematics and Mobility Analysis of Carton Folds in Packing Manipulation Based on the Mechanism Equivalent
,”
Proc. Inst. Mech. Eng., Part C
,
216
(
10
), pp.
959
970
.
36.
Dai
,
J. S.
, and
Rees Jones
,
J.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.
37.
Rodriguez-Leal
,
E.
, and
Dai
,
J. S.
,
2007
, “
From Origami to a New Class of Centralized 3-DOF Parallel Mechanisms
,”
ASME
Paper No. DETC2007-35516.
38.
Winder
,
B. G.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2009
, “
Kinematic Representations of Pop-Up Paper Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021009
.
39.
Bowen
,
L. A.
,
Grames
,
C. L.
,
Magleby
,
S. P.
,
Lang
,
R. J.
, and
Howell
,
L. L.
,
2013
, “
An Approach for Understanding Action Origami as Kinematic Mechanisms
,”
ASME
Paper No. DETC2013-13407.
40.
Abdul-Sater
,
K.
,
Winkler
,
M. M.
,
Irlinger
,
F.
, and
Lueth
,
T. C.
,
2015
, “
Three-Position Synthesis of Origami-Evolved, Spherically Constrained Spatial Revolute–Revolute Chains
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
011012
.
41.
Zhang
,
K.
,
Fang
,
Y.
,
Fang
,
H.
, and
Dai
,
J. S.
,
2010
, “
Geometry and Constraint Analysis of the 3-Spherical Kinematic Chain Based Parallel Mechanism
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031014
.
42.
Salerno
,
M.
,
Zhang
,
K.
,
Menciassi
,
A.
, and
Dai
,
J. S.
,
2014
, “
A Novel 4-DOFs Origami Enabled, SMA Actuated, Robotic End-Effector for Minimally Invasive Surgery
,”
IEEE International Conference on Robotics and Automation
(
ICRA2014
),
Hong Kong
, Paper No. 1137.
You do not currently have access to this content.