Accordion patterns are widely used for deployable shelters, due to their simple construction, elegant deployment mechanism, and folded plate form with an inherent structural efficiency. This paper proposes two new accordion-type shelters that use modified geometries to improve on the structural stability and stiffness of the typical accordion form. The first shelter is termed a distributed frame accordion shelter and is generated by separating fully folded accordion frames between spacer plates aligned with the transverse direction. A transverse stiffness and increased flexural rigidity can therefore be achieved while maintaining a nonzero floor area. The second shelter is termed a diamond wall accordion shelter and is generated by inserting secondary wall elements that increase wall sectional depth and counteract the coupled rotational-transverse displacements at accordion roof–wall junctions. For both shelter types, a geometric parameterization and a full-scale prototype are presented. Good correlation is seen between the designed and constructed surfaces. A numerical investigation also shows that the new forms have substantially increased flexural rigidities compared to the typical accordion form.

References

References
1.
Strozyk
,
E.
, and
Neeb
,
S.
,
2010
, “
Accordion Collection
,” Last accessed May 30, 2015, http://www.elisastrozyk.de/seite/accordioncollection.html
2.
Jackson
,
P.
,
2011
,
Folding Techniques for Designers: From Sheet to Form
,
Laurence King
,
Laurence King Publishing Ltd, London
.
3.
Make Architects
,
2013
, “
Canary Wharf Kiosk
,” Last accessed May 30, 2015, http://www.makearchitects.com/projects/canary-wharf-kiosk
4.
Šekularac
,
N.
,
Ivanović-Šekularac
,
J.
, and
Čikić-Tovarović
,
J.
,
2012
, “
Folded Structures in Modern Architecture
,”
Facta Univ. Ser.: Archit. Civ. Eng.
,
10
(
1
), pp.
1
16
.
5.
Martinez-Martin
,
F.
, and
Thrall
,
A.
,
2014
, “
Honeycomb Core Sandwich Panels for Origami-Inspired Deployable Shelters: Multi-Objective Optimization for Minimum Weight and Maximum Energy Efficiency
,”
Eng. Struct.
,
69
, pp.
158
167
.
6.
Thrall
,
A.
, and
Quaglia
,
C.
,
2014
, “
Accordion Shelters: A Historical Review of Origami-Like Deployable Shelters Developed by the U.S. Military
,”
Eng. Struct.
,
59
, pp.
686
692
.
7.
De Temmerman
,
N.
,
Mollaert
,
M.
,
Van Mele
,
T.
, and
De Laet
,
L.
,
2007
, “
Design and Analysis of a Foldable Mobile Shelter System
,”
Int. J. Space Struct.
,
22
(
3
), pp.
161
168
.
8.
De Temmerman
,
N.
,
Roovers
,
K.
,
Mira
,
L. A.
,
Vergauwen
,
A.
,
Koumar
,
A.
,
Brancart
,
S.
,
De Laet
,
L.
, and
Mollaert
,
M.
,
2014
, “
Lightweight Transformable Structures: Materialising the Synergy Between Architectural and Structural Engineering
,”
Mobile and Rapidly Assembled Structures IV
, Vol.
136
,
WIT
Press, UK
.
9.
Rihal
,
S.
,
2004
, “
Origami Deployable Disaster Relief Shelter
,”
Structures and Architecture New Concepts, Applications and Challenges
,
P. J. S.
Cruz
, ed.,
CRC Press
,
Oxford, UK
, pp.
1080
1087
.
10.
De Focatiis
,
D.
, and
Guest
,
S.
,
2002
, “
Deployable Membranes Designed From Folding Tree Leaves
,”
Philos. Trans. R. Soc. London A
,
360
(
1791
), pp.
227
238
.
11.
Kobayashi
,
H.
,
Daimaruya
,
M.
, and
Vincent
,
J.
,
2000
, “
Folding/Unfolding Manner of Tree Leaves as a Deployable Structure
,”
IUTAM-IASS
Symposium on Deployable Structures: Theory and Applications
,
Springer
,
The Netherlands
, pp.
211
220
.
12.
Cai
,
J.
,
Deng
,
X.
,
Xu
,
Y.
, and
Feng
,
J.
,
2015
, “
Geometry and Motion Analysis of Origami-Based Deployable Shelter Structures
,”
J. Struct. Eng.
,
141
(
10
), p.
06015001
.
13.
Khayyat
,
H. A.
,
2015
, “
Foldable and Deployable Pyramidal Plated Structures. Part I: Design
,”
Int. J. Emerging Technol. Adv. Eng.
,
5
(
2
), pp.
486
494
.
14.
Tonon
,
O. L.
,
1991
, “
Geometry of the Spatial Folded Form
,”
Int. J. Space Struct.
,
6
(
3
), pp.
227
240
.
15.
Stavridis
,
L.
,
2010
,
Structural Systems: Behaviour and Design Volume 2: Spatial Structural Systems, Foundations and Dynamics
,
ICE Publishing, UK
.
16.
Tachi
,
T.
,
2010
, “
Geometric Considerations for the Design of Rigid Origami Structures
,”
International Association for Shell and Spatial Structures
(
IASS
) Symposium 2010, Shanghai, China, Nov. 8–12.
17.
Chudoba
,
R.
,
van der Woerd
,
J.
, and
Hegger
,
J.
,
2014
, “
Numerical Modeling Support for Form-Finding and Manufacturing of Folded-Plate Structures Made of Cementitious Composites Using Origami Principles
,”
Comput. Model. Concr. Struct.
,
1
, pp.
451
461
.
18.
Buri
,
H.
, and
Weinand
,
Y.
,
2008
, “
Origami Folded Plate Structures, Architecture
,”
10th World Conference on Timber Engineering
, Miyazaki, Japan.
19.
Weinand
,
Y.
,
2009
, “
Innovative Timber Constructions
,”
Symposium of the International Association for Shell and Spatial Structures, Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures: Proceedings
, Editorial de la Universitat Politécnica de Valencia, pp.
666
673
.
20.
Trometer
,
S.
, and
Krupna
,
M.
,
2006
, “
Development and Design of Glass Folded Plate Structures
,”
J. Int. Assoc. Shell Spatial Struct.
,
152
, pp.
253
260
.
21.
Cash
,
T. N.
,
Warren
,
H. S.
, and
Gattas
,
J. M.
,
2015
, “
Analysis of Miura-Type Folded and Morphing Sandwich Beams
,”
ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, American Society of Mechanical Engineers, pp.
1
9
.
22.
Gioia
,
F.
,
Dureisseix
,
D.
,
Motro
,
R.
, and
Maurin
,
B.
,
2012
, “
Design and Analysis of a Foldable/Unfoldable Corrugated Architectural Curved Envelop
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031003
.
23.
Mitra
,
A.
,
2009
, “
The Grammar of Developable Double Corrugations (for Formal Architectural Applications)
,” Ph.D. thesis, University College London, London, UK.
24.
Gattas
,
J.
,
Wu
,
W.
, and
You
,
Z.
,
2013
, “
Miura-Base Rigid Origami: Parametrisations of First-Level Derivative and Piecewise Geometries
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111011
.
25.
Czaplicki
,
R. M.
,
1991
, “
Cellular Core Structure Providing Gridlike Bearing Surfaces on Opposing Parallel Planes of the Formed Core
,”
U.S. Patent No. 5,028,474
.
26.
Khaliulin
,
V.
,
2005
, “
A Technique for Synthesizing the Structures of Folded Cores of Sandwich Panels
,”
Russ. Aeronaut. Izvestiia Vyssh. Uchebn. Zavedeniia Aviatsionnaia Tekh.
,
48
(
1
), pp.
7
12
.
27.
Gale
,
G. W.
,
2010
, “
Three-Dimensional Support Structure
,” U.S. Patent No. 7,762,938.
28.
Heimbs
,
S.
,
2013
, “
Foldcore Sandwich Structures and Their Impact Behaviour: An Overview
,”
Dynamic Failure of Composite and Sandwich Structures
,
Springer
,
The Netherlands
, pp.
491
544
.
29.
Miura
,
K.
, and
Tachi
,
T.
,
2010
, “
Synthesis of Rigid-Foldable Cylindrical Polyhedral
,”
Symmetry: Art and Science
,
International Society for the Interdisciplinary Study of Symmetry
,
Gmuend, Austria
.
30.
Schenk
,
M.
, and
Guest
,
S. D.
,
2013
, “
Geometry of Miura-Folded Metamaterials
,”
Proc. Natl. Acad. Sci.
,
110
(
9
), pp.
3276
3281
.
31.
Gattas
,
J.
, and
You
,
Z.
,
2015
, “
Geometric Assembly of Rigid-Foldable Morphing Sandwich Structures
,”
Eng. Struct.
,
94
, pp.
149
159
.
32.
Gattas
,
J.
,
2013
, “
Rigid Origami Toolbox
,” http://joegattas.com/rigid-origami-toolbox/
33.
Camping Warehouse
,
2015
, “
Great Bear GB-3290 2 Man Dome Tent
,” Last accessed Nov. 19, 2015, http://www.camping-warehouse.com.au/tents/hiking-tents/great-bear-gb-3290-2-man-dome-tent.html
34.
Chen
,
Y.
,
Peng
,
R.
, and
You
,
Z.
,
2015
, “
Origami of Thick Panels
,”
Science
,
349
(
6246
), pp.
396
400
.
You do not currently have access to this content.