This work presents an analysis and validation of a foldable boom actuated by tape-spring foldable elastic hinges for space applications. The analytical equations of tape-springs are described, extending the classical equations for isotropic materials to orthotropic carbon-fiber composite materials. The analytical equations which describe the buckling of the hinge have been implemented in a multibody simulation software where the hinge was modeled as a nonlinear elastic bushing and the boom as a rigid body. In the experimental phase, the boom was fabricated using a thin layer carbon-fiber composite tube, and the residual vibrations after deployment were experimentally tested with a triaxial accelerometer. A direct comparison of the simulation with the physical prototype pointed out the dangerous effect of higher order vibrations which are difficult to capture in simulation. We observed that while the vibrational spectra of simulations and experiments were compatible at low frequencies during deployment, a marked difference was observed at frequencies beyond 30 Hz. While difficult to model, higher order frequencies should be carefully accounted for in the design of self-deployable space structures. Indeed, if tape-springs are used as a self-locking mechanism, the higher vibrational modes could have enough energy to unlock the structure during operation.

References

References
1.
Pellegrino
,
S.
,
2002
,
Deployable Structures
,
Springer Science & Business Media
,
Wien, Austria
.
2.
Puig
,
L.
,
Barton
,
A.
, and
Rando
,
N.
,
2010
, “
A Review on Large Deployable Structures for Astrophysics Missions
,”
Acta Astronaut.
,
67
(
1
), pp.
12
26
.
3.
Trento
,
R.
,
Noschese
,
P.
,
Meschini
,
A.
,
Mizzoni
,
R.
,
Scarozza
,
D.
,
Mascolo
,
G.
,
Fabiani
,
G.
,
Zaccariotto
,
M.
,
Bettanini
,
C.
,
Debei
,
S.
, and
Pertile
,
M.
,
2013
, “
Development of Long Deployable Dipole Antennas for Sounder Radars in ThalesAleniaSpace-Italia
,”
31st AIAA International Communications Satellite Systems Conference
(
ICSSC
),
Florence, Italy
, Oct. 14–17, pp.
332
341
.
4.
Murphey
,
T. W.
,
2009
, “
Historical Perspectives on the Development of Deployable Reflectors
,”
AIAA
Paper No. 2009-2605.
5.
Gantes
,
C. J.
,
2001
,
Deployable Structures: Analysis and Design
,
WIT Press
,
Ashurst, Southampton, UK
.
6.
Pertile
,
M.
,
Zaccariotto
,
M.
,
Bettanini
,
C.
, and
Debei
,
S.
,
2014
, “
Position and Orientation Measurement of a Fast Moving Multibody System in Ground Tests
,”
Metrology for Aerospace
(
MetroAeroSpace
), Benevento, May 29–30,
IEEE, New York
, pp.
445
449
.
7.
Donzier
,
A.
, and
Sicre
,
J.
,
1997
, “
Self Actuating Damped Hinge
,”
7th European Space Mechanisms and Tribology Symposium
, p.
277
.
8.
Mallikarachchi
,
H.
, and
Pellegrino
,
S.
,
2014
, “
Deployment Dynamics of Ultrathin Composite Booms With Tape-Spring Hinges
,”
J. Spacecr. Rockets
,
51
(
2
), pp.
604
613
.
9.
Mallikarachchi
,
H.
, and
Pellegrino
,
S.
,
2014
, “
Design of Ultrathin Composite Self-Deployable Booms
,”
J. Spacecr. Rockets
,
51
(
6
), pp.
1811
1821
.
10.
Soykasap
,
Ö.
,
2009
, “
Deployment Analysis of a Self-Deployable Composite Boom
,”
Compos. Struct.
,
89
(
3
), pp.
374
381
.
11.
Soykasap
,
O.
,
2006
, “
Micromechanical Models for Bending Behavior of Woven Composites
,”
J. Spacecr. Rockets
,
43
(
5
), pp.
1093
1100
.
12.
Ham
,
S.
, and
Bathe
,
K.-J.
,
2012
, “
A Finite Element Method Enriched for Wave Propagation Problems
,”
Comput. Struct.
,
94–95,
, pp.
1
12
.
13.
Kohno
,
H.
,
Bathe
,
K.-J.
, and
Wright
,
J. C.
,
2010
, “
A Finite Element Procedure for Multiscale Wave Equations With Application to Plasma Waves
,”
Comput. Struct.
,
88
(
1
), pp.
87
94
.
14.
Seffen
,
K. A.
,
Pellegrino
,
S.
, and
Parks
,
G. T.
,
2000
, “
Deployment of a Panel by Tape-Spring Hinges
,”
IUTAM-IASS
Symposium on Deployable Structures: Theory and Applications
,
S.
Pellegrino
and
S. D.
Guest
, eds.,
Springer
,
The Netherlands
, pp.
355
364
.
15.
Love
,
A. E. H.
,
2013
,
A Treatise on the Mathematical Theory of Elasticity
,
Cambridge University Press
,
Cambridge
.
16.
Yee
,
J.
,
Soykasap
,
O.
, and
Pellegrino
,
S.
,
2004
, “
Carbon Fibre Reinforced Plastic Tape Springs
,”
AIAA
Paper No. 2004-1819.
17.
Mansfield
,
E.
,
1973
, “
Large-Deflexion Torsion and Flexure of Initially Curved Strips
,”
Proc. R. Soc. A
,
334
(
1598
), pp.
279
298
.
18.
Tarazaga
,
P. A.
,
Inman
,
D. J.
, and
Wilkie
,
W. K.
,
2006
, “
Control of a Space Rigidizable-Inflatable Boom Using Embedded Piezoelectric Composite Actuators
,”
AIAA
Paper No. 2006-1976.
19.
Riks
,
E.
,
1972
, “
The Application of Newton's Method to the Problem of Elastic Stability
,”
ASME J. Appl. Mech.
,
39
(
4
), pp.
1060
1065
.
20.
Li
,
Z.
,
Song
,
W.
, and
Wang
,
Z.
,
2011
, “
Numerical and Theoretical Studies of the Buckling of Shape Memory Tape Spring
,”
Struct. Longevity
,
6
(
3
), pp.
133
143
.
21.
Marks
,
G. W.
,
Reilly
,
M. T.
, and
Huff
,
R. L.
,
2002
, “
The Lightweight Deployable Antenna for the MARSIS Experiment on the Mars Express Spacecraft
,”
36th Aerospace Mechanisms Symposium
, Glenn Research Center,
Cleveland, OH
, pp.
183
196
.
22.
Adams
,
D. S.
, and
Mobrem
,
M.
,
2006
,
MARSIS Antenna Flight Deployment Anomaly and Resolution
,
Jet Propulsion Laboratory, National Aeronautics and Space Administration
,
Pasadena, CA
.
You do not currently have access to this content.