A method is presented utilizing networks of lamina emergent joints, known as lamina emergent arrays, to accommodate large-curvature developable structures suited to deployable applications. By exploiting the ruling lines in developable surfaces, this method enables developable structures and mechanisms that can be manufactured with two-dimensional geometry and yet have a greater range of elastic motion than is possible with a solid sheet of material. Aligning the joints to the ruling lines also biases the structure to a specific deployment path. A mathematical model is developed to describe the resulting stiffness of the structure employing the lamina emergent arrays and equations are derived to facilitate stress analysis of the structure. Finite element results show the sensitivity of alignment of the elements in the array to the stress present in the developed structure. A specific technique for creating an array pattern for conical developable surfaces is described. Examples of developable structures and mechanisms, including curved-fold origami models transitioned to thick materials and two origami-inspired mechanisms, are examined.

References

References
1.
Struik
,
D. J.
,
1961
,
Lectures on Classical Differential Geometry
,
2nd ed.
,
Addison-Wesley
,
Reading, MA
.
2.
Cajori
,
F.
,
1929
, “
Generalizations in Geometry as Seen in the History of Developable Surfaces
,”
Am. Math. Mon.
,
36
(
8
), pp.
431
437
.
3.
Lawrence
,
S.
,
2011
, “
Developable Surfaces: Their History and Application
,”
Nexus Network J.
,
13
(
3
), pp.
701
714
.
4.
Pottmann
,
H.
, and
Wallner
,
J.
,
2009
,
Computational Line Geometry
,
Springer Science & Business
,
Heidelberg, Germany
.
5.
Ushakov
,
V.
,
1999
, “
Developable Surfaces in Euclidean Space
,”
J. Aust. Math. Soc. (Ser. A)
,
66
(
3
), pp.
388
402
.
6.
Lang
,
R. J.
,
2013
, “
One Ellipse to Rule Them All
,” The Fold (
Origami USA
), Nov.–Dec. (epub).
7.
Fuchs
,
D.
, and
Tabachnikov
,
S.
,
1999
, “
More on Paperfolding
,”
Am. Math. Mon.
,
106
(
1
), pp.
27
35
.
8.
Solomon
,
J.
,
Vouga
,
E.
,
Wardetzky
,
M.
, and
Grinspun
,
E.
,
2012
, “
Flexible Developable Surfaces
,”
Comput. Graphics Forum
,
31
(
5
), pp.
1567
1576
.
9.
Bo
,
P.
, and
Wang
,
W.
,
2007
, “
Geodesic-Controlled Developable Surfaces for Modeling Paper Bending
,”
Comput. Graphics Forum
,
26
(
3
), pp.
365
374
.
10.
Rose
,
K.
,
Sheffer
,
A.
,
Wither
,
J.
,
Cani
,
M.-P.
, and
Thibert
,
B.
,
2007
, “
Developable Surfaces From Arbitrary Sketched Boundaries
,”
Fifth Eurographics Symposium on Geometry Processing
(
SGP '07
), Barcelona, Spain, July 4–6, pp.
163
172
.
11.
Demaine
,
E. D.
,
Demaine
,
M. L.
,
Koschitz
,
D.
, and
Tachi
,
T.
,
2011
, “
Curved Crease Folding: A Review on Art, Design and Mathematics
,”
IABSE-IASS Symposium
, London, Sept. 20–23, Paper No. 10065184.
12.
Huffman
,
D. A.
,
1976
, “
Curvature and Creases: A Primer on Paper
,”
IEEE Trans. Comput.
,
25
(
10
), pp.
1010
1019
.
13.
Resch
,
R. D.
,
1974
, “
Portfolio of Shaded Computer Images
,”
Proc. IEEE
,
62
(
4
), pp.
496
502
.
14.
Duncan
,
J. P.
, and
Duncan
,
J.
,
1982
, “
Folded Developables
,”
Proc. R. Soc. London A
,
383
(
1784
), pp.
191
205
.
15.
Demaine
,
E. D.
,
Demaine
,
M. L.
, and
Koschitz
,
D.
,
2011
, “
Reconstructing David Huffman's Legacy in Curved-Crease Folding
,”
Origami5
, pp.
39
51
.
16.
Demaine
,
E. D.
,
Demaine
,
M. L.
,
Huffman
,
D. A.
,
Koschitz
,
D.
, and
Tachi
,
T.
,
2014
, “
Designing Curved-Crease Tessellations of Lenses: Qualitative Properties of Rulings
,” 6th International Meeting on Origami in Science, Mathematics and Education (
OSME 2014
), Tokyo, Aug. 10–13, Paper No. 168.
17.
Koschitz
,
R. D.
,
2014
, “
Computational Design With Curved Creases: David Huffman's Approach to Paperfolding
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
18.
Jacobsen
,
J. O.
,
Winder
,
B. G.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2010
, “
Lamina Emergent Mechanisms and Their Basic Elements
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
011003
.
19.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
20.
Delimont
,
I. L.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2015
, “
Evaluating Compliant Hinge Geometries for Origami-Inspired Mechanisms
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011009
.
21.
Delimont
,
I. L.
,
2014
, “
Compliant Joints Suitable for Use as Surrogate Folds
,” Master's thesis, Brigham Young University, Provo, UT.
22.
Jacobsen
,
J. O.
,
Chen
,
G.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2009
, “
Lamina Emergent Torsional (LET) Joint
,”
Mech. Mach. Theory
,
44
(
11
), pp.
2098
2109
.
23.
You
,
Z.
,
2014
, “
Folding Structures Out of Flat Materials
,”
Science
,
345
(
6197
), pp.
623
624
.
24.
Dureisseix
,
D.
,
2012
, “
An Overview of Mechanisms and Patterns With Origami
,”
Int. J. Space Struct.
,
27
(
1
), pp.
1
14
.
25.
Jamal
,
M.
,
Bassik
,
N.
,
Cho
,
J.-H.
,
Randall
,
C. L.
, and
Gracias
,
D. H.
,
2010
, “
Directed Growth of Fibroblasts Into Three Dimensional Micropatterned Geometries Via Self-Assembling Scaffolds
,”
Biomaterials
,
31
(
7
), pp.
1683
1690
.
26.
Silverberg
,
J. L.
,
Evans
,
A. A.
,
McLeod
,
L.
,
Hayward
,
R. C.
,
Hull
,
T.
,
Santangelo
,
C. D.
, and
Cohen
,
I.
,
2014
, “
Using Origami Design Principles to Fold Reprogrammable Mechanical Metamaterials
,”
Science
,
345
(
6197
), pp.
647
650
.
27.
Lee
,
D.-Y.
,
Kim
,
J.-S.
,
Kim
,
S.-R.
,
Koh
,
J.-S.
, and
Cho
,
K.-J.
,
2013
, “
The Deformable Wheel Robot Using Magic-Ball Origami Structure
,”
ASME
DETC2013-13016.
28.
Ma
,
J.
, and
You
,
Z.
,
2014
, “
Energy Absorption of Thin-Walled Square Tubes With a Prefolded Origami Pattern—Part I: Geometry and Numerical Simulation
,”
ASME J. Appl. Mech.
,
81
(
1
), p.
011003
.
29.
Liu
,
Y.
,
Boyles
,
J. K.
,
Genzer
,
J.
, and
Dickey
,
M. D.
,
2012
, “
Self-Folding of Polymer Sheets Using Local Light Absorption
,”
Soft Matter
,
8
(
6
), pp.
1764
1769
.
30.
Felton
,
S.
,
Tolley
,
M.
,
Demaine
,
E.
,
Rus
,
D.
, and
Wood
,
R.
,
2014
, “
A Method for Building Self-Folding Machines
,”
Science
,
345
(
6197
), pp.
644
646
.
31.
Saito
,
K.
,
Pellegrino
,
S.
, and
Nojima
,
T.
,
2014
, “
Manufacture of Arbitrary Cross-Section Composite Honeycomb Cores Based on Origami Techniques
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051011
.
32.
Miyashita
,
S.
,
DiDio
,
I.
,
Ananthabhotla
,
I.
,
An
,
B.
,
Sung
,
C.
,
Arabagi
,
S.
, and
Rus
,
D.
,
2015
, “
Folding Angle Regulation by Curved Crease Design for Self-Assembling Origami Propellers
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021013
.
33.
Gattas
,
J. M.
, and
You
,
Z.
,
2014
, “
Miura-Base Rigid Origami: Parametrizations of Curved-Crease Geometries
,”
ASME J. Mech. Des.
,
136
(
12
), p.
121404
.
34.
Chung
,
W.
,
Kim
,
S.-H.
, and
Shin
,
K.-H.
,
2008
, “
A Method for Planar Development of 3D Surfaces in Shoe Pattern Design
,”
J. Mech. Sci. Technol.
,
22
(
8
), pp.
1510
1519
.
35.
Kilian
,
M.
,
Flöry
,
S.
,
Chen
,
Z.
,
Mitra
,
N. J.
,
Sheffer
,
A.
, and
Pottmann
,
H.
,
2008
, “
Curved Folding
,”
ACM Trans. Graphics
,
27
(
3
), p.
75
.
36.
Pottmann
,
H.
,
Schiftner
,
A.
,
Bo
,
P.
,
Schmiedhofer
,
H.
,
Wang
,
W.
,
Baldassini
,
N.
, and
Wallner
,
J.
,
2008
, “
Freeform Surfaces From Single Curved Panels
,”
ACM Trans. Graphics
,
27
(
3
), paper number 76.
37.
Eigensatz
,
M.
,
Kilian
,
M.
,
Schiftner
,
A.
,
Mitra
,
N. J.
,
Pottmann
,
H.
, and
Pauly
,
M.
,
2010
, “
Paneling Architectural Freeform Surfaces
,”
ACM Trans. Graphics
,
29
(
4
), paper number 45.
38.
Stevens
,
K. A.
,
1981
, “
The Visual Interpretation of Surface Contours
,”
Artif. Intell.
,
17
(
1
), pp.
47
73
.
39.
Young
,
W. C.
,
Budynas
,
R. G.
, and
Sadegh
,
A. M.
,
2012
,
Roark's Formulas for Stress and Strain
,
8th ed.
,
McGraw-Hill
,
New York
.
40.
Homer
,
E. R.
,
Harris
,
M. B.
,
Zirbel
,
S. A.
,
Kolodziejska
,
J. A.
,
Kozachkov
,
H.
,
Trease
,
B. P.
,
Borgonia
,
J.-P. C.
,
Agnes
,
G. S.
,
Howell
,
L. L.
, and
Hofmann
,
D. C.
,
2014
, “
New Methods for Developing and Manufacturing Compliant Mechanisms Utilizing Bulk Metallic Glass
,”
Adv. Eng. Mater.
,
16
(
7
), pp.
850
856
.
41.
Ma
,
R. R.
,
Belter
,
J. T.
, and
Dollar
,
A. M.
,
2015
, “
Hybrid Deposition Manufacturing: Design Strategies for Multimaterial Mechanisms Via Three-Dimensional Printing and Material Deposition
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021002
.
42.
Kim
,
C.
,
Espalin
,
D.
,
Cuaron
,
A.
,
Perez
,
M. A.
,
Lee
,
M.
,
MacDonald
,
E.
, and
Wicker
,
R. B.
,
2015
, “
Cooperative Tool Path Planning for Wire Embedding on Additively Manufactured Curved Surfaces Using Robot Kinematics
,”
Journal of Mechanisms and Robotics
,
7
(
2
), p.
021003
.
43.
Edmondson
,
B. J.
,
Bowen
,
L. A.
,
Grames
,
C. L.
,
Magleby
,
S. P.
,
Howell
,
L. L.
, and
Bateman
,
T. C.
,
2013
, “
Oriceps: Origami-Inspired Forceps
,”
ASME
Paper No. SMASIS2013-3299.
44.
Nelson
,
T. G.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2015
, “
Curved-Folding-Inspired Deployable Compliant Rolling-Contact Element (D-CORE)
,”
Mech. Mach. Theory
(in press).
You do not currently have access to this content.