We present the design for a family of deployable structures based on the origami flasher, which are rigidly foldable, i.e., foldable with revolute joints at the creases and planar rigid faces. By appropriate choice of sector angles and introduction of a cut, a single degree-of-freedom (DOF) mechanism is obtained. These structures may be used to realize highly compact deployable mechanisms.

References

References
1.
Lang
,
R. J.
,
1997
,
Origami in Action
,
St. Martin's Griffin
,
New York
.
2.
Kawasaki
,
T.
,
2005
,
Roses, Origami, & Math
,
Japan Publications Trading
,
Tokyo
.
3.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1992
, “
Inextensional Wrapping of Flat Membranes
,”
First International Seminar on Structural Morphology
,
Montpellier
,
France
, Sept. 7–11, pp.
203
215
.
4.
Nojima
,
T.
,
2002
, “
Origami Modeling of Functional Structures Based on Organic Patterns
,” Master's thesis, Graduate School of Kyoto University, Kyoto, Japan.
5.
Reynolds
,
W. D.
,
Jeon
,
S. K.
,
Banik
,
J. A.
, and
Murphey
,
T. W.
,
2014
, “
Advanced Folded Approaches for Deployable Spacecraft Payloads
,”
ASME
Paper No. DETC2013-13378.
6.
Natori
,
M. C.
,
Katsumata
,
N.
,
Yamakawa
,
H.
,
Sakamoto
,
H.
, and
Kishimoto
,
N.
,
2014
, “
Conceptual Model Study Using Origami for Membrane Space Structures
,”
ASME
Paper No. DETC2013-13490.
7.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1996
, “
A New Concept for Solid Surface Deployable Antennas
,”
Acta Astronaut.
,
38
(
2
), pp.
103
113
.
8.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Thomson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable Arrays
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
.
9.
Tachi
,
T.
,
2011
, “
Rigid-Foldable Thick Origami
,”
Origami5
,
CRC Press
,
Boca Raton, FL
, pp.
253
264
.
10.
Edmonson
,
B. J.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
An Offset Panel Technique for Thick Rigidly Foldable Origami
,”
ASME
Paper No. DETC2014-35606.
11.
Miura
,
K.
,
2009
, “
The Science of Miura-ori: A Review
,”
Origami4
,
R. J.
Lang
, ed.,
A K Peters
,
Natick, MA
, pp.
87
100
.
12.
Scheel
,
H.
,
1974
, “
Space-Saving Storage of Flexible Sheets
,” U.S. Patent No. 3,848,821.
13.
Huffman
,
D. A.
,
1976
, “
Curvature and Creases: A Primer on Paper
,”
IEEE Trans. Comput.
,
C-25
(
10
), pp.
1010
1019
.
14.
Kawasaki
,
T.
,
1989
, “
On the Relation Between Mountain-Creases and Valley-Creases of a Flat Origami
,”
First International Meeting of Origami Science and Technology
,
Ferrara
,
Italy
, Dec. 6–7,
H.
Huzita
, ed., pp.
229
237
.
15.
Hull
,
T.
,
2006
,
Project Origami
,
A K Peters
,
Natick, MA
.
16.
Tachi
,
T.
,
2009
, “
Generalization of Rigid Foldable Quadrilateral Mesh Origami
,”
50th Symposium of the International Association for Shell and Spatial Structures
,
Valencia
,
Spain
, Sept. 28–Oct. 2.
17.
Tibbalds
,
B.
,
Guest
,
S. D.
, and
Pellegrino
,
S.
,
2004
, “
Inextensional Packaging of Thin Shell Slit Reflectors
,”
Tech. Mech.
,
24
(
3–4
), pp.
211
220
.
18.
Tachi
,
T.
, and
Miura
,
K.
,
2012
, “
Rigid-Foldable Cylinders and Cells
,”
J. Int. Assoc. Shell Spat. Struct. (IASS)
,
53
(
4
), pp.
217
226
.
19.
Wilcox
,
E. W.
,
Shrager
,
A.
,
Bowen
,
L.
,
Frecker
,
M.
,
von Lockette
,
P.
,
Simpson
,
T.
,
Magleby
,
S. P.
,
Lang
,
R. J.
, and
Howell
,
L. L.
,
2015
, “
Considering Mechanical Advantage in the Design and Actuation of an Origami-Based Mechanisms
,”
ASME
Paper No. DETC2015-47708.
You do not currently have access to this content.