The folding behavior of a prismatic mast based on Kresling origami pattern is studied in this paper. The mast consists of identical triangles with cyclic symmetry. Bar stresses and necessary external nodal loads of the mast during the motion are studied analytically. The results show that the mechanical behaviors are different when the initial height of the mast is different. Then the numerical analysis is used to prove the accuracy of the analytical results. The influence of the geometry and the number of sides of the polygon on the folding behavior of the basic segment is also investigated. The folding process of the mast with multistories was discussed. The effect of the imperfection based on the eigenvalue buckling modes on the folding behavior is also studied. It can be found that when the number of sides of the polygon is small, the imperfection in the axial direction affects the energy seriously by changing the folding sequence of the mast. When the number of sides of the polygon is larger, the imperfection in the horizontal plane has significant effect on the folding pattern, which leads to the sudden change of energy curve.

References

References
1.
Sorguc
,
A. G.
,
Hagiwara
,
I.
, and
Selcuk
,
S. A.
,
2009
, “
Origami in Architecture: A Medium of Inquiry for Design in Architecture
,”
Metu Jfa
,
26
(
2
), pp.
235
247
.
2.
Kwan
,
A. S. K.
, and
Pellegrino
,
S.
,
1991
, “
The Pantographic Deployable Mast: Design, Structural Performance and Deployment Tests
,”
Rapidly Assembled Structures
,
P. S.
Bulson
, ed.,
Computational Mechanics Publications
,
Southampton, UK
, pp.
213
224
.
3.
You
,
Z.
, and
Pellegrino
,
S.
,
1997
, “
Cable-Stiffened Pantographic Deployable Structures. Part 2: Mesh Reflector
,”
AIAA J.
,
35
(
8
), pp.
1348
1355
.
4.
Guest
,
S. D.
,
1996
, “
Deployable Structures: Concepts and Analysis
,” Ph.D. thesis, Cambridge University, Cambridge, UK.
5.
Gunnar
,
T.
,
2002
, “
Deployable Tensegrity Structures for Space Applications
,” Ph.D. thesis, Royal Institute of Technology Department of Mechanics, Stockholm, Sweden.
6.
Hagiwara
,
I.
,
2008
, “
From Origami to Origamics
,”
Sci. Jpn. J.
,
5
(
2
) pp.
22
25
.
7.
Miura
,
K.
,
1980
, “
Method of Packaging and Deployment of Large Membranes in Space
,”
Proceedings of 31st Congress of International Astronautics Federation (IAF-80-A31)
, Tokyo, Japan, pp.
1
10
.
8.
Yoshimura
,
Y.
,
1951
, “
On the Mechanism of Buckling of a Circular Cylindrical Shell Under Axial Compression and Bending
,” Reports of the
Institute of Science and Technology of the University of Tokyo, National Advisory Committee on Aeronautics
,
Washington, DC
, Report No.
NACA
-TM-1390.
9.
Hunt
,
G. W.
,
Lord
,
G. J.
, and
Peletier
,
M. A.
,
2003
, “
Cylindrical Shell Buckling: A Characterization of Localization and Periodicity
,”
Discrete Contin. Dyn. Syst. B
,
3
(
4
), pp.
505
518
.
10.
Thompson
,
J. M. T.
, and
Hunt
,
G. W.
,
1984
,
Elastic Instability Phenomena
,
Wiley
,
Chichester
.
11.
Hegedüs
,
I.
,
1986
, “
Analysis of Lattice Single Layer Cylindrical Structures
,”
Space Struct.
,
2
, pp.
87
91
.
12.
Friedman
,
N.
,
Weiner
,
M.
,
Farkas
,
G.
,
Hegedüs
,
I.
, and
Ibrahimbegovic
,
A.
,
2013
, “
On the Snap-Back Behavior of a Self-Deploying Antiprismatic Column During Packing
,”
Eng. Struct.
,
50
, pp.
74
89
.
13.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1994
, “
The Folding of Triangulated Cylinders, Part I: Geometric Considerations
,”
ASME J. Appl. Mech.
,
61
(
4
), pp.
773
777
.
14.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1994
, “
The Folding of Triangulated Cylinders, Part II: The Folding Process
,”
ASME J. Appl. Mech.
,
61
(
4
), pp.
778
783
.
15.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1996
, “
The Folding of Triangulated Cylinders, Part III: Experiments
,”
ASME J. Appl. Mech.
,
63
(
1
), pp.
77
83
.
16.
Nojima
,
T.
,
2002
, “
Modelling of Folding Patterns in Flat Membranes and Cylinder by Origami
,”
JSME Int. J. Ser. C
,
45
(
1
), pp.
364
370
.
17.
Ma
,
J.
, and
You
,
Z.
,
2014
, “
Energy Absorption of Thin-Walled Square Tubes With a Prefolded Origami Pattern—Part I: Geometry and Numerical Simulation
,”
ASME J. Appl. Mech.
,
81
(
1
), p.
011003
.
18.
Ma
,
J.
, and
You
,
Z.
,
2013
, “
Energy Absorption of Thin-Walled Beams With a Pre-Folded Origami Pattern
,”
Thin-walled Struct.
,
73
, pp.
198
206
.
19.
Schenk
,
M.
,
Kerr
,
S.
,
Smyth
,
A. M.
, and
Guest
,
S. D.
,
2013
, “
Inflatable Cylinders for Deployable Space Structures
,”
First Conference Transformables
, Seville, Spain.
20.
Schenk
,
M.
,
Viquerat
,
A. D.
,
Seffen
,
K. A.
, and
Guest
,
S. D.
,
2014
, “
Review of Inflatable Booms for Deployable Space Structures: Packing and Rigidisation
,”
J. Spacecr. Rockets
,
51
(
3
), pp.
762
778
.
21.
Miura
,
K.
, and
Tachi
,
T.
,
2010
, “
Synthesis of Rigid-Foldable Cylindrical Polyhedral
,”
Symmetry: Art and Science
,
International Society for the Interdisciplinary Study of Symmetry
,
Gmuend, Austria
.
22.
Tachi
,
T.
,
2010
, “
Geometric Considerations for the Design of Rigid Origami Structures
,”
International Association for Shell and Spatial Structures (IASS) Symposium
, Shanghai, China.
23.
Liu
,
S.
,
Lv
,
W.
,
Chen
,
Y.
, and
Lu
,
G.
,
2014
, “
Deployable Prismatic Structures With Origami Patterns
,”
ASME
Paper No. DETC2014-34567.
24.
Kresling
,
B.
,
1995
, “
Plant “Design”: Mechanical Simulations of Growth Patterns and Bionics
,”
Biomimetics
,
3
(
3
), pp.
105
222
.
25.
Kresling
,
B.
,
2001
, “
Folded Tubes as Compared to Kikko (“Tortoise-Shell”) Bamboo
,”
Origami
,
T.
Hull
, ed.,
AK Peters
,
Natick, MA
, pp.
197
207
.
26.
Kresling
,
B.
,
2008
, “
Natural Twist Buckling in Shells: From the Hawkmoth’s Bellows to the Deployable Kresling-Pattern and Cylindrical Miura-Ori
,” 6th International Conference on Computation of Shell & Spatial Structures (
IASS-IACM 2008
), Ithaca, NY, May 28–31.
27.
Hunt
,
G. W.
, and
Ichiro
,
A.
,
2005
, “
Twist Buckling and the Foldable Cylinder: An Exercise in Origami
,”
Int. J. Non-Linear Mech.
,
40
(
6
), pp.
833
843
.
28.
Cai
,
J. G.
,
Deng
,
X. W.
,
Zhou
,
Y.
,
Feng
,
J.
, and
Tu
,
Y. M.
,
2015
, “
Bistable Behavior of the Cylindrical Origami Structure With Kresling Pattern
,”
ASME J. Mech. Des.
,
137
(
6
), p.
061404
.
29.
You
,
Z.
, and
Cole
,
N.
,
2006
, “
Self-Locking Bi-Stable Deployable Booms
,”
AIAA
Paper No. 2006-1685.
30.
Nagase
,
K.
, and
Skelton
,
R. E.
,
2014
, “
Double-Helix Tensegrity Structures
,”
AIAA J.
,
53
(
4
), pp.
847
862
.
31.
Cai
,
J. G.
,
Gu
,
L. M.
,
Xu
,
Y. X.
,
Feng
,
J.
, and
Zhang
,
J.
,
2012
, “
Nonlinear Stability of a Single-Layer Hybrid Grid Shell
,”
J. Civil Eng. Manage.
,
18
(
5
), pp.
752
760
.
32.
Cai
,
J. G.
,
Zhou
,
Y.
,
Xu
,
Y. X.
, and
Feng
,
J.
,
2013
, “
Non-Linear Stability Analysis of a Hybrid Barrel Vault Roof
,”
Steel Compos. Struct.
,
14
(
6
), pp.
571
586
.
33.
Wang
,
Y.
,
Ameer
,
G. A.
,
Sheppard
,
B. J.
, and
Langer
,
R.
,
2002
, “
A Tough Biodegradable Elastomer
,”
Nat. Biotechnol.
,
20
(
6
), pp.
602
606
.
34.
Sonnenschein
,
M. F.
,
Ginzburg
,
V. V.
,
Schiller
,
K. S.
, and
Wendt
,
B. L.
,
2013
, “
Design, Polymerization, and Properties of High Performance Thermoplastic Polyurethane Elastomers From Seed-Oil Derived Soft Segments
,”
Polymer
,
54
(
4
), pp.
1350
1360
.
You do not currently have access to this content.