Rigid origami inspires new design technology in deployable structures with large deployable ratio due to the property of flat foldability. In this paper, we present a general kinematic model of rigid origami pattern and obtain a family of deployable prismatic structures. Basically, a four-crease vertex rigid origami pattern can be presented as a spherical 4R linkage, and the multivertex patterns are the assemblies of spherical linkages. Thus, this prismatic origami structure is modeled as a closed loop of spherical 4R linkages, which includes all the possible prismatic deployable structures consisting of quadrilateral facets and four-crease vertices. By solving the compatibility of the kinematic model, a new group of 2n-sided deployable prismatic structures with plane symmetric intersections is derived with multilayer, straight and curvy variations. The general design method for the 2n-sided multilayer deployable prismatic structures is proposed. All the deployable structures constructed with this method have single degree-of-freedom (DOF), can be deployed and folded without stretching or twisting the facets, and have the compactly flat-folded configuration, which makes it to have great potential in engineering applications.

References

References
1.
Miyashita
,
S.
,
Meeker
,
L.
,
Tolley
,
M. T.
,
Wood
,
R. J.
, and
Rus
,
D.
,
2014
, “
Self-Folding Miniature Elastic Electric Devices
,”
Smart Mater. Struct.
,
23
(
9
), p.
094005
.
2.
Nojima
,
T.
,
2002
, “
Modelling of Folding Patterns in Flat Membranes and Cylinder by Origami
,”
JSME Int. J. Ser. C
,
45
(
1
), pp.
364
370
.
3.
Nojima
,
T.
,
2007
, “
Origami Modeling of Functional Structures Based on Organic Patterns
,” VIPSI Conference 2007, Tokyo, May 31–June 6, http://impact.kuaero.kyoto-u.ac.jp/pdf/Origami.pdf
4.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1994
, “
The Folding of Triangulated Cylinders, Part I: Geometric Considerations
,”
ASME J. Appl. Mech.
,
61
(
4
), pp.
773
777
.
5.
Ma
,
J. Y.
,
Yuan
,
L.
, and
Zhong
,
Y.
,
2010
, “
Axial Crushing Tests of Steel Thin-Walled Square Tubes With Pyramid Pattern
,”
51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, Orlando, FL, Apr. 12–15,
AIAA
Paper No. 2010-2615.
6.
Song
,
J.
,
Chen
,
Y.
, and
Lu
,
G.
,
2012
, “
Axial Crushing of Thin-Walled Structures With Origami Patterns
,”
Thin-Walled Struct.
,
54
, pp.
65
71
.
7.
Song
,
J.
,
Chen
,
Y.
, and
Lu
,
G.
,
2013
, “
Light-Weight Thin-Walled Structures With Patterned Windows Under Axial Crushing
,”
Int. J. Mech. Sci.
,
66
, pp.
239
248
.
8.
Miura
,
K.
,
2002
, “
PCCP Shells
,”
New Approaches to Structural Mechanics, Shells and Biological Structures
,
H. R.
Drew
, and
S.
Pellegrino
, eds.,
Springer, Dordrecht
,
The Netherlands
, pp.
329
339
.
9.
Kuribayashi
,
K.
,
Tsuchiya
,
K.
,
You
,
Z.
,
Tomus
,
D.
,
Umemoto
,
M.
,
Ito
,
T.
, and
Sasaki
,
M.
,
2006
, “
Self-Deployable Origami Stent Grafts as a Biomedical Application of Ni-Rich TiNi Shape Memory Alloy Foil
,”
Mater. Sci. Eng. A
,
419
(
1–2
), pp.
131
137
.
10.
Onal
,
C. D.
,
Wood
,
R. J.
, and
Rus
,
D.
,
2013
, “
An Origami-Inspired Approach to Worm Robots
,”
IEEE/ASME Trans. Mechatronics
,
18
(
2
), pp.
430
438
.
11.
Watanabe
,
N.
, and
Kawaguchi
,
K.-I.
,
2009
, “
The Method for Judging Rigid Foldability
,”
Origami 4
,
A K Peters/CRC Press
,
Natick, MA
, pp.
165
174
.
12.
Chudoba
,
R.
,
van der Woerd
,
J.
,
Schmerl
,
M.
, and
Hegger
,
J.
,
2013
, “
ORICRETE: Modeling Support for Design and Manufacturing of Folded Concrete Structures
,”
Adv. Eng. Software
,
72
, pp.
119
127
.
13.
Yasuda
,
H.
,
Yein
,
T.
,
Tachi
,
T.
,
Miura
,
K.
, and
Taya
,
M.
,
2013
, “
Folding Behaviour of Tachi-Miura Polyhedron Bellows
,”
Proc. R. Soc. A
,
469
(
2159
), p.
20130351
.
14.
Tachi
,
T.
,
2009
, “
One-DOF Cylindrical Deployable Structures With Rigid Quadrilateral Panels
,”
International Association for Shell and Spatial Structures Symposium
(
IASS
), Valencia, Spain, Sept. 28–Oct. 2,
A.
Domingo
, and
C.
Lazaro
, eds.,
IASS
,
Madrid, Spain
, pp.
2295
2305
.
15.
Tachi
,
T.
,
2010
, “
Freeform Rigid-Foldable Structure Using Bidirectionally Flat-Foldable Planar Quadrilateral Mesh
,”
Advances in Architectural Geometry 2010
,
Springer, Vienna
,
Austria
, pp.
87
102
.
16.
Medellín-Castillo
,
H. I.
, and
Cervantes-Sánchez
,
J. J.
,
2005
, “
An Improved Mobility Analysis for Spherical 4R Linkages
,”
Mech. Mach. Theory
,
40
(
8
), pp.
931
947
.
17.
Chiang
,
C. H.
,
1984
, “
On the Classification of Spherical Four-Bar Linkages
,”
Mech. Mach. Theory
,
19
(
3
), pp.
283
287
.
18.
Wei
,
G. W.
, and
Dai
,
J. S.
,
2014
, “
Origami-Inspired Integrated Planar-Spherical Overconstrained Mechanisms
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051003
.
19.
Wu
,
W. N.
, and
You
,
Z.
,
2011
, “
A Solution for Folding Rigid Tall Shopping Bags
,”
Proc. R. Soc. London, Ser. A
,
467
(
2133
), pp.
2561
2574
.
20.
Chen
,
Y.
, and
You
,
Z.
,
2005
, “
Mobile Assemblies Based on the Bennett Linkage
,”
Proc. R. Soc. London, Ser. A
,
461
(
2056
), pp.
1229
1245
.
21.
Chen
,
Y.
, and
You
,
Z.
,
2008
, “
On Mobile Assemblies of Bennett Linkages
,”
Proc. R. Soc. London, Ser A
,
464
(
2093
), pp.
1275
1283
.
22.
Liu
,
S. Y.
, and
Chen
,
Y.
,
2009
, “
Myard Linkage and Its Mobile Assemblies
,”
Mech. Mach. Theory
,
44
(
10
), pp.
1950
1963
.
23.
Wang
,
K. F.
, and
Chen
,
Y.
,
2010
, “
Rigid Origami to Fold a Flat Paper Into a Patterned Cylinder
,” Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education,
CRC Press
,
Boca Raton, FL
.
24.
Liu
,
S. C.
,
Lv
,
W. L.
,
Chen
,
Y.
, and
Lu
,
G.
,
2014
, “
Deployable Prismatic Structures With Origami Patterns
,”
ASME
Paper No. DETC2014-34567.
25.
Denavit
,
J.
, and
Hartenberg
,
R. S.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
22
, pp.
215
221
.
26.
Cervantes-Sánchez
,
J. J.
, and
Medellín-Castillo
,
H. I.
,
2002
, “
A Robust Classification Scheme for Spherical 4R Linkages
,”
Mech. Mach. Theory
,
37
(
10
), pp.
1145
1163
.
27.
Schenk
,
M.
, and
Guest
,
S. D.
,
2013
, “
Geometry of Miura-Folded Metamaterials
,”
Proc. Natl. Acad. Sci. U.S.A.
,
110
(
9
), pp.
3276
3281
.
You do not currently have access to this content.