This paper provides an approach to model the reaction force of origami mechanisms when they are deformed. In this approach, an origami structure is taken as an equivalent redundantly actuated mechanism, making it possible to apply the forward-force analysis to calculating the reaction force of the origami structure. Theoretical background is provided in the framework of screw theory, where the repelling screw is introduced to integrate the resistive torques of folded creases into the reaction-force of the whole origami mechanism. Two representative origami structures are then selected to implement the developed modeling approach, as the widely used waterbomb base and the waterbomb-based integrated parallel mechanism. With the proposed kinematic equivalent, their reaction forces are obtained and validated, presenting a ground for force analysis of origami-inspired mechanisms.

References

1.
Kanade
,
T.
,
1980
, “
A Theory of Origami World
,”
Artif. Intell.
,
13
(
3
), pp.
279
311
.
2.
Lang
,
R. J.
, and
Hull
,
T. C.
,
2005
, “
Origami Design Secrets: Mathematical Methods for an Ancient Art
,”
Math. Intell.
,
27
(
2
), pp.
92
95
.
3.
Dai
,
J.
, and
Jones
,
J. R.
,
2002
, “
Kinematics and Mobility Analysis of Carton Folds in Packing Manipulation Based on the Mechanism Equivalent
,”
Proc. Inst. Mech. Eng., Part C
,
216
(
10
), pp.
959
970
.
4.
Dai
,
J.
, and
Caldwell
,
D.
,
2010
, “
Origami-Based Robotic Paper-and-Board Packaging for Food Industry
,”
Trends Food Sci. Technol.
,
21
(
3
), pp.
153
157
.
5.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
6.
Carroll
,
D. W.
,
Magleby
,
S. P.
,
Howell
,
L. L.
,
Todd
,
R. H.
, and
Lusk
,
C. P.
,
2005
, “
Simplified Manufacturing Through a Metamorphic Process for Compliant Ortho-Planar Mechanisms
,”
ASME
Paper No. IMECE2005-82093.
7.
Winder
,
B. G.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2009
, “
Kinematic Representations of Pop-Up Paper Mechanisms
,”
J. Mech. Rob.
,
1
(
2
), p.
021009
.
8.
Song
,
J.
,
Chen
,
Y.
, and
Lu
,
G.
,
2012
, “
Axial Crushing of Thin-Walled Structures With Origami Patterns
,”
Thin-Walled Struct.
,
54
, pp.
65
71
.
9.
Ma
,
J.
, and
You
,
Z.
,
2014
, “
Energy Absorption Of Thin-Walled Square Tubes With A Prefolded Origami Pattern—Part I: Geometry and Numerical Simulation
,”
ASME J. Appl. Mech.
,
81
(
1
), p.
011003
.
10.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Thomson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable Arrays
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
.
11.
Chen
,
Y.
,
Peng
,
R.
, and
You
,
Z.
,
2015
, “
Origami of Thick Panels
,”
Science
,
349
(
6246
), pp.
396
400
.
12.
Bassik
,
N.
,
Stern
,
G. M.
, and
Gracias
,
D. H.
,
2009
, “
Microassembly Based on Hands Free Origami With Bidirectional Curvature
,”
Appl. Phys. Lett.
,
95
(
9
), p.
091901
.
13.
McGough
,
K.
,
Ahmed
,
S.
,
Frecker
,
M.
, and
Ounaies
,
Z.
,
2014
, “
Finite Element Analysis and Validation of Dielectric Elastomer Actuators Used for Active Origami
,”
Smart Mater. Struct.
,
23
(
9
), p.
094002
.
14.
Lee
,
D.-Y.
,
Kim
,
J.-S.
,
Kim
,
S.-R.
,
Koh
,
J.-S.
, and
Cho
,
K.-J.
,
2013
, “
The Deformable Wheel Robot Using Magic-Ball Origami Structure
,”
ASME
Paper No. DETC2013-13016.
15.
Onal
,
C. D.
,
Wood
,
R. J.
, and
Rus
,
D.
,
2013
, “
An Origami-Inspired Approach to Worm Robots
,”
IEEE/ASME Trans. Mechatron.
,
18
(
2
), pp.
430
438
.
16.
Vander Hoff
,
E.
,
Jeong
,
D.
, and
Lee
,
K.
,
2014
, “
Origamibot-i: A Thread-Actuated Origami Robot for Manipulation and Locomotion
,”
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2014
), Chicago, Sept. 14–18, pp.
1421
1426
.
17.
Zhang
,
K.
,
Qiu
,
C.
, and
Dai
,
J. S.
,
2015
, “
Helical Kirigami-Enabled Centimeter-Scale Worm Robot With Shape-Memory-Alloy Linear Actuators
,”
J. Mech. Rob.
,
7
(
2
), p.
021014
.
18.
Dai
,
J. S.
, and
Jones
,
J. R.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.
19.
Bowen
,
L. A.
,
Grames
,
C. L.
,
Magleby
,
S. P.
,
Howell
,
L. L.
, and
Lang
,
R. J.
,
2013
, “
A Classification of Action Origami as Systems of Spherical Mechanisms
,”
ASME J. Mech. Des.
135
(
11
), p.
111008
.
20.
Hull
,
T.
,
1994
. “
On the Mathematics of Flat Origamis
,” Congressus Numerantium, pp.
215
224
.
21.
Liu
,
H.
, and
Dai
,
J.
,
2002
, “
Carton Manipulation Analysis Using Configuration Transformation
,”
Proc. Inst. Mech. Eng., Part C
,
216
(
5
), pp.
543
555
.
22.
Mitani
,
J.
,
2009
, “
A Design Method for 3D Origami Based on Rotational Sweep
,”
Comput. Aided Des. Appl.
,
6
(
1
), pp.
69
79
.
23.
Dai
,
J. S.
,
Wang
,
D.
, and
Cui
,
L.
,
2009
, “
Orientation and Workspace Analysis of the Multifingered Metamorphic Handmetahand
,”
IEEE Trans. Rob.
,
25
(
4
), pp.
942
947
.
24.
Wilding
,
S. E.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2012
, “
Spherical Lamina Emergent Mechanisms
,”
Mech. Mach. Theory
,
49
, pp.
187
197
.
25.
Bowen
,
L.
,
Frecker
,
M.
,
Simpson
,
T. W.
, and
von Lockette
,
P.
,
2014
, “
A Dynamic Model of Magneto-Active Elastomer Actuation of the Waterbomb Base
,”
ASME
Paper No. DETC2014-35407.
26.
Yao
,
W.
, and
Dai
,
J. S.
,
2008
, “
Dexterous Manipulation of Origami Cartons With Robotic Fingers Based on the Interactive Configuration Space
,”
ASME J. Mech. Des.
,
130
(
2
), p.
022303
.
27.
Zhang
,
K.
,
Fang
,
Y.
,
Fang
,
H.
, and
Dai
,
J. S.
,
2010
, “
Geometry and Constraint Analysis of the Three-Spherical Kinematic Chain Based Parallel Mechanism
,”
J. Mech. Rob.
,
2
(
3
), p.
031014
.
28.
Wei
,
G.
, and
Dai
,
J. S.
,
2014
, “
Origami-Inspired Integrated Planar-Spherical Overconstrained Mechanisms
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051003
.
29.
Beex
,
L. A.
, and
Peerlings
,
R. H.
,
2009
, “
An Experimental and Computational Study of Laminated Paperboard Creasing and Folding
,”
Int. J. Solids Struct.
,
46
(
24
), pp.
4192
4207
.
30.
Felton
,
S. M.
,
Tolley
,
M. T.
,
Shin
,
B.
,
Onal
,
C. D.
,
Demaine
,
E. D.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2013
, “
Self-Folding With Shape Memory Composites
,”
Soft Matter
,
9
(
32
), pp.
7688
7694
.
31.
Ahmed
,
S.
,
Lauff
,
C.
,
Crivaro
,
A.
,
McGough
,
K.
,
Sheridan
,
R.
,
Frecker
,
M.
,
von Lockette
,
P.
,
Ounaies
,
Z.
,
Simpson
,
T.
,
Lien
,
J.
, and
Strzelec
,
R.
,
2013
, “
Multi-Field Responsive Origami Structures: Preliminary Modeling and Experiments
,”
ASME
Paper No. DETC2013-12405.
32.
Delimont
,
I. L.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2015
, “
Evaluating Compliant Hinge Geometries for Origami-Inspired Mechanisms
,”
J. Mech. Rob.
,
7
(
1
), p.
011009
.
33.
Dai
,
J. S.
, and
Cannella
,
F.
,
2008
, “
Stiffness Characteristics of Carton Folds for Packaging
,”
ASME J. Mech. Des.
,
130
(
2
), p.
022305
.
34.
Qiu
,
C.
,
Aminzadeh
,
V.
, and
Dai
,
J. S.
,
2013
, “
Kinematic Analysis and Stiffness Validation of Origami Cartons
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111004
.
35.
Mentrasti
,
L.
,
Cannella
,
F.
,
Pupilli
,
M.
, and
Dai
,
J. S.
,
2013
, “
Large Bending Behavior of Creased Paperboard. I. Experimental Investigations
,”
Int. J. Solids Struct.
,
50
(
20
), pp.
3089
3096
.
36.
Mentrasti
,
L.
,
Cannella
,
F.
,
Pupilli
,
M.
, and
Dai
,
J. S.
,
2013
, “
Large Bending Behavior Of Creased Paperboard. II. Structural Analysis
,”
Int. J. Solids Struct.
,
50
(
20
), pp.
3097
3105
.
37.
Hanna
,
B. H.
,
Lund
,
J. M.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
Waterbomb Base: A Symmetric Single-Vertex Bistable Origami Mechanism
,”
Smart Mater. Struct.
,
23
(
9
), p.
094009
.
38.
Hanna
,
B. H.
,
Magleby
,
S.
,
Lang
,
R. J.
, and
Howell
,
L. L.
, “
Force-Deflection Modeling for Generalized Origami Waterbomb-Base Mechanisms
,”
ASME J. Appl. Mech.
,
82
(
8
), p.
081001
.
39.
Dai
,
J. S.
, and
Jones
,
J. R.
,
2001
, “
Interrelationship Between Screw Systems and Corresponding Reciprocal Systems and Applications
,”
Mech. Mach. Theory
,
36
(
5
), pp.
633
651
.
40.
Zhang
,
K.
,
Qiu
,
C.
, and
Dai
,
J. S.
,
2015
, “
An Origami-Parallel Structure Integrated Deployable Continuum Robot
,” ASME Paper No. DETC2015-46504.
41.
Zhang
,
K.
, and
Fang
,
Y.
,
2008
, “
Kinematics and Workspace Analysis of a Novel Spatial 3-DOF Parallel Manipulator
,”
Prog. Nat. Sci.
,
18
(
4
), pp.
432
440
.
42.
Murray
,
R. M.
,
Li
,
Z.
,
Sastry
,
S. S.
, and
Sastry
,
S. S.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
,
Boca Raton
, FL.
43.
Lipkin
,
H.
, and
Duffy
,
J.
,
1985
, “
The Elliptic Polarity of Screws
,”
ASME J. Mech, Trans., Autom. Des.
,
107
(
3
), pp.
377
387
.
You do not currently have access to this content.