The method of intersection of surfaces generated by kinematic dyads is applied to obtain mechanisms that are able to shift from one mode of motion to another. Then a mobility analysis shows that the singularities of the generated surfaces can be used to obtain mechanisms which can change their number of degrees-of-freedom depending on its configuration. The generator dyads are connected as usually done by a spherical pair. However, in the cases shown in this contribution the three-degrees-of-freedom of the spherical pair are not all necessary to keep the kinematic chain closed and movable, and the spherical pair can be substituted by either a pair of intersecting revolute joints or a single revolute joint. This substitution can be obtained by means of two methods presented in this contribution.

References

References
1.
Dai
,
J.
, and
Jones
,
J. R.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.
2.
Dai
,
J.
,
Zoppi
,
M.
, and
Kong
,
X.
, eds.,
2012
,
Advances in Reconfigurable Mechanisms and Robots I
,
Springer Verlag
,
London
.
3.
Wohlhart
,
K.
,
1996
, “
Kinematotropic Linkages
,” in Recent
Advances in Robot Kinematics
,
J.
Lenarcic
, and
V.
Parent-Castelli
, eds., Kluwer Academic,
Portoroz, Slovenia; Dordrecht, The Netherlands
, pp.
359
368
.
4.
Galletti
,
C.
, and
Fanghella
,
P.
,
2001
, “
Single-Loop Kinematotropic Mechanisms
,”
Mech. Mach. Theory
,
36
(
3
), pp.
743
761
.
5.
Rafaat
,
S.
,
Hervé
,
J.
,
Nahavandi
,
S.
, and
Trinh
,
H.
,
2007
, “
Two-Mode Overconstrained Three-DOFs Rotational-Translational Linear-Motor-Based Parallel Kinematic Mechanism for Machine Tool Applications
,”
Robotica
,
25
(
4
), pp.
461
466
.
6.
Kong
,
X.
,
2012
, “
Type Synthesis of Variable Degrees-Of-Freedom Parallel Manipulators With Both Planar and 3T1R Operation Modes
,”
ASME
Paper No. DETC2012-70621.
7.
Kong
,
X.
,
2014
, “
Reconfiguration Analysis of a 3-DOF Parallel Mechanism Using Euler Parameter Quaternions and Algebraic Geometry Method
,”
Mech. Mach. Theory
,
74
, pp.
188
201
.
8.
Kong
,
X.
, and
Huang
,
C.
,
2009
, “
Type Synthesis of Single-Dof Single-Loop Mechanisms With Two Operation Modes
,”
ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
, pp.
136
141
.
9.
Kong
,
X.
, and
Pfurner
,
M.
,
2015
, “
Type Synthesis and Reconfiguration Analysis of a Class of Variable-dof Single-Loop Mechanisms
,”
Mech. Mach. Theory
,
85
, pp.
116
128
.
10.
Zhang
,
K.
, and
Dai
,
J. S.
,
2015
, “
Screw-System-Variation Enabled Reconfiguration of the Bennett Plano-Spherical Hybrid Linkage and its Evolved Parallel Mechanism
,”
ASME J. Mech. Des.
,
137
(
6
), pp.
1
10
.
11.
Gan
,
D.
,
Dai
,
J. S.
, and
Caldwell
,
D.
,
2011
, “
Constraint-Based Limb Synthesis and Mobility-Change-Aimed Mechanism Construction
,”
ASME J. Mech. Des.
,
133
(
5
), pp.
1
9
.
12.
Torfason
,
L.
, and
Crossley
,
F.
,
1971
, “
Use of the Intersection of Surfaces as a Method for Design of Spatial Mechanisms
,”
3rd World Congress for the Theory of Machines and Mechanisms
, Vol. B, Kupari, Yugoslavia, pp.
247
258
, Paper No. B-20.
13.
Shrivastava
,
A.
, and
Hunt
,
K.
,
1973
, “
Dwell Motion From Spatial Linkages
,”
ASME J. Eng. Industry
,
95
(
2
), pp.
511
518
.
14.
Su
,
H.
, and
McCarthy
,
J.
,
2005
, “
Dimensioning a Constrained Parallel Robot to Reach a Set of Task Positions
,”
IEEE International Conference on Robotics and Automation
, Barcelona, Spain, pp.
4026
4030
.
15.
Lee
,
C.
, and
Hervé
,
J.
,
2012
, “
A Discontinuously Movable Constant Velocity Shaft Coupling of Koenigs Joint Type
,” in
Advances in Reconfigurable Mechanisms and Robots I
,
M.
Zoppi
,
J. S.
Dai
, and
X.
Kong
, eds., Springer-Verlag, London, pp.
35
43
.
16.
Müller
,
A.
,
1998
, “Generic Mobility of Rigid Body Mechanisms,”
Mech. Mach. Theory
,
44
(6), pp. 1240–1255.
17.
Müller
,
A.
,
2015
, “Representation of the Kinematic Topology of Mechanisms for Kinematic Analysis,”
Mech. Sci.
,
6
, pp. 137–146.
18.
Crane
,
C.
, and
Duffy
,
J.
,
1998
,
Kinematic Analysis of Robot Manipulators
,
Cambridge University
,
Cambridge
.
19.
Levin
,
J.
,
1976
, “
A Parametric Algorithm for Drawing Pictures of Solid Objects Composed of Quadric Surfaces
,”
Commun. ACM
,
19
(
10
), pp.
555
563
.
20.
Levin
,
J.
,
1979
, “
Mathematical Models for Determining the Intersection of Quadric Surfaces
,”
Comput. Graph. Image Process.
,
11
(
1
), pp.
73
87
.
21.
Miller
,
J. R.
,
1987
, “
Geometric Approaches to Nonplanar Quadric Surface Intersection Curves
,”
ACM Trans. Graph.
,
6
(
4
), pp.
274
307
.
22.
Liu
,
Y.
, and
Zsombor-Murray
,
P.
,
1995
, “
Intersection Curves Between Quadric Surfaces of Revolution
,”
Trans. Can. Soc. Mech. Eng.
,
19
(
4
), pp.
435
453
.
23.
Hervé
,
J.
,
1978
, “
Analyse structurelle des mécanismes par groupe des déplacements
,”
Mech. Mach. Theory
,
13
(
4
), pp.
437
450
.
24.
Rico
,
J.
, and
Ravani
,
B.
,
2003
, “
On Mobility Analysis of Linkages Using Group Theory
,”
ASME J. Mech. Des.
,
125
(
1
), pp.
70
80
.
25.
Rico
,
J.
,
Gallardo
,
J.
, and
Duffy
,
J.
,
1999
, “
Screw Theory and the Higher Order Kinematic Analysis of Serial and Closed Chains
,”
Mech. Mach. Theory
,
34
(
4
), pp.
559
586
.
26.
Myard
,
F.
,
1931
, “
Contribution à la géométrie des systèmes articulés
,”
Bull. Soc. Math. France
,
59
, pp.
183
210
.
27.
Lee
,
C.
, and
Hervé
,
J.
,
2014
, “
Oblique Circular Torus, Villarceau Circles and Four Types of Bennett Linkages
,”
Proc. Inst. Mech. Eng., Part C
,
228
(
4
), pp.
742
752
.
28.
Lerbet
,
J.
,
1998
, “
Analytic Geometry and Singularities of Mechanisms
,”
Z. Angew. Math. Mech.
,
78
(
10
), pp.
687
694
.
29.
Müller
,
A.
,
2002
, “
Local Analysis of Singular Configuration of Open and Closed Loop Manipulators
,”
Multibody Sys. Dyn.
,
8
(
3
), pp.
297
326
.
30.
López-Custodio
,
P.
,
Rico
,
J.
,
Cervantes-Sánchez
,
J.
, and
Pérez-Soto
,
G.
,
2014
, “
Verification of the Higher Order Kinematic Analyses Equations
,” Eur. J. Mech. A/Solids (submitted).
31.
Tadeo-Chávez
,
A.
,
Rico
,
J.
,
Cervantes-Sánchez
,
J.
,
Pérez-Soto
,
G.
, and
Muller
,
A.
,
2011
, “
Screw Systems Generated by Subalgebras: A Further Analysis
,”
ASME
Paper No. DETC2011-48304.
32.
Sommese
,
A.
, and
Wampler
, II,
C. W.
,
2005
,
The Numerical Solution of Systems of Polynomials Arising in Engineering and Science
,
World Scientific
,
Cambridge
.
33.
Baker
,
J.
,
1984
, “
On 5-Revolute Linkages With Parallel Adjacent Joint Axes
,”
Mech. Mach. Theory
,
19
(
6
), pp.
467
475
.
34.
Torfason
,
L.
, and
Sharma
,
A.
,
1973
, “
Analysis of Spatial RRGRR Mechanisms by the Method of Generated Surfaces
,”
ASME J. Eng. Ind.
,
95
(
3
), pp.
704
708
.
35.
Villarceau
,
Y.
,
1848
, “
Théorème sur le tore
,”
Nouv. Ann. Math.
,
7
, pp.
345
347
.
36.
Fitcher
,
E.
, and
Hunt
,
K.
,
1975
, “
The Fecund Torus, its Bitangent-Circles and Derived Linkages
,”
Mech. Mach. Theory
,
10
(
2
), pp.
167
176
.
37.
Altmann
,
F.
,
1954
, “
Communication to Grodzinski P. and M'Ewen, E., Link Mechanisms in Modern Kinematics'
,”
Proc. Inst. Mech. Eng., Part E
,
168
(
37
), pp.
877
896
.
38.
Phillips
,
J.
,
1990
,
Freedom in Machinery, Vol. 2: Screw Theory Exemplified
,
Cambridge University
,
Cambridge
.
39.
Baker
,
J.
,
1993
, “
A Geometrico-Algebraic Exploration of Altmann's Linkage
,”
Mech. Mach. Theory
,
28
(
2
), pp.
249
260
.
40.
Baker
,
J.
,
2012
, “
On the Closure Modes of a Generalised Altmann Linkage
,”
Mech. Mach. Theory
,
52
, pp.
243
247
.
This content is only available via PDF.
You do not currently have access to this content.