This paper presents a new design of a deployable one degree-of-freedom (DOF) mechanism. Polygonal rigid-link designs are first investigated. Then, belt-driven links are considered in order to maximize the expansion ratio while avoiding flattened ill-conditioned parallelogram configurations. The planar basic shape of the proposed design is a triangle. Hence, virtually any planar or spatial surface can be created by assembling such faces. For architecture and telescopic applications, the cupola assembly is investigated. The advantages of this approach are discussed, and the scalability is demonstrated. Finally, a prototype is built for illustration purposes.
Issue Section:
Research Papers
References
1.
Ishii
, K.
, 2000
, Structural Design of Retractable Roof Structures
, WIT Press
, Southampton, UK
.2.
Gantes
, C.
, 2001
, Deployable Structures: Analysis and Design
, WIT Press
, New York
.3.
Imbriale
, W. A.
, Gao
, S.
, and Boccia
, L.
, 2012
, Space Antenna Handbook
, Wiley
, Chichester, UK
.4.
Pellegrino
, S.
, 2001
, Deployable Structures
, Vol. 412
, Springer-Verlag
, Wien, Austria
.5.
Hoberman
, C.
, 1991
, “Radial Expansion/Retraction Truss Structures
,” U.S. Patent No. 5,024,031.6.
Wei
, G.
, and Dai
, J. S.
, 2012
, “Synthesis of a Family of Regular Deployable Polyhedral Mechanisms (DPMs)
,” Latest Advances in Robot Kinematics
, Springer, New York, pp. 123
–130
.7.
Korkmaz
, K.
, 2005
, “Generation of a New Type of Architectural Umbrella
,” Int. J. Space Struct.
, 20
(1
), pp. 35
–41
.8.
Lopatina
, A.
, and Morozov
, E.
, 2009
, “Modal Analysis of the Thin-Walled Composite Spoke of an Umbrella-Type Deployable Space Antenna
,” Compos. Struct.
, 88
(1
), pp. 46
–55
.9.
Wei
, X.-Z.
, Yao
, Y.-A.
, Tian
, Y.-B.
, and Fang
, R.
, 2006
, “A New Method of Creating Expandable Structure for Spatial Objects
,” Proc. Inst. Mech. Eng., Part C
, 220
(12
), pp. 1813
–1818
.10.
Kiper
, G.
, Soylemez
, E.
, and Kisisel
, A. O.
, 2008
, “A Family of Deployable Polygons and Polyhedra
,” Mech. Mach. Theory
, 43
(5
), pp. 627
–640
.11.
Agrawal
, S.
, and Kumar
, S.
, 2002
, “Polyhedral Single Degree-of-Freedom Expanding Structures: Design and Prototypes
,” ASME J. Mech. Des.
, 124
(3
), pp. 473
–478
.12.
Kovacs
, F.
, Tarnai
, T.
, Fowler
, P.
, and Guest
, S.
, 2004
, “A Class of Expandable Polyhedral Structures
,” Int. J. Solids Struct.
, 41
(3–4
), pp. 1119
–1137
.13.
Wohlhart
, K.
, 1995
, “New Overconstrained Spheroidal Linkages
,” 9th World Congress on the Theory of Machines and Mechanism
, Milan, Italy, Aug. 29–Sept. 5, Vol. 1
, pp. 149
–154
.14.
Gosselin
, C.
, and Gagnon-Lachance
, D.
, 2006
, “Expandable Polyhedral Mechanisms Based on Polygonal One-Degree-of-Freedom Faces
,” Proc. Inst. Mech. Eng., Part C
, 220
(7
), p. 1011
.15.
Wohlhart
, K.
, 2008
, “Double-Ring Polyhedral Linkages
,” First Conference on Interdisciplinary Applications in Kinematics
, Lima, Perú, Jan. 9–11, pp. 1
–17
.16.
Phillips
, J.
, 1984/1990
, Freedom Machinery
, Vol. 1, Cambridge University Press
, Cambridge, UK
.17.
Guest
, S.
, and Fowler
, P.
, 2005
, “A Symmetry-Extended Mobility Rule
,” Mech. Mach. Theory
, 40
(9
), pp. 1002
–1014
.18.
Loeb
, A.
, 1991
, Space Structures
, Birkhauser
, Basel, Germany
.19.
Gogu
, G.
, 2005
, “Chebyshev-Grübler-Kutzbachs Criterion for Mobility Calculation of Multi-Loop Mechanisms Revisited Via Theory of Linear Transformations
,” Eur. J. Mech. A/Solids
, 24
(3
), pp. 427
–441
.20.
Hartenberg
, R.
, and Denavit
, J.
, 1964
, Kinematic Synthesis of Linkages
, McGraw-Hill
, New York
.21.
Ballia
, S. S.
, and Chanda
, S.
, 2002
, “Transmission Angle in Mechanisms (Triangle in Mech)
,” Mech. Mach. Theory
, 37
(2
), pp. 175
–195
.22.
Tao
, D.
, 1964
, Applied Linkage Synthesis
, Addison-Wesley
, Reading, MA
.23.
Gosselin
, C. M.
, Sefrioui
, J.
, and Richard
, M. J.
, 1992
, “Solutions polynomiales au problème de la cinématique directe des manipulateurs parallèles plans à trois degrés de liberté
,” Mech. Mach. Theory
, 27
(2
), pp. 107
–119
.24.
Birglen
, L.
, Laliberté
, T.
, and Gosselin
, C.
, 2008
, Underactuated Robotic Hands
, Vol. 40
, Springer-Verlag
, Wien, Austria
.25.
St-Onge
, D.
, and Gosselin
, C.
, 2014
, “Deployable Mechanisms for Small to Medium-Sized Space Debris Removal
,” 65th International Astronautical Congress, (IAC-14), Space Debris Symposium
, Toronto, Canada, Sept. 29–Oct. 3, p. 11
.26.
Li
, J.
, Yan
, S.
, Guo
, F.
, and Guo
, P.
, 2013
, “Effects of Damping, Friction, Gravity, and Flexibility on the Dynamic Performance of a Deployable Mechanism With Clearance
,” J. Mech. Eng. Sci.
, 227
(8
), pp. 1
–13
.27.
Wohlhart
, K.
, 2007
, “Cupola Linkages
,” 12th IFToMM World Congress
, Besançon, France, June 18–21, pp. 319
–324
.28.
Posamentier
, A. S.
, 2012
, The Glorious Golden Ratio
, Prometheus Books
, Amherst, NY
.29.
Wei
, G.
, and Dai
, J.
, 2014
, “Reconfigurable and Deployable Platonic Mechanisms With a Variable Revolute Joint
,” Advances in Robot Kinematics
, Springer
, Cham, Switzerland
, pp. 485
–495
.30.
Laliberté
, T.
, Gosselin
, C.
, and Côté
, G.
, 2001
, “A Rapid Prototyping Framework for Fast and Cost-Effective Design of Robotic Mechanism Prototypes
,” IEEE Rob. Autom. Mag.
, 8
(3
), pp. 43
–52
.31.
Hongwei
, G.
, Jing
, Z.
, Rongqiang
, L.
, and Zongquan
, D.
, 2013
, “Effects of Joint on Dynamics of Space Deployable Structure
,” Chin. J. Mech. Eng.
, 26
(5
), pp. 861
–872
.32.
Britvec
, S.
, 1995
, Stability and Optimization of Flexible Space Structures
, Birkhauser
, Basel, Germany
.Copyright © 2016 by ASME
You do not currently have access to this content.