This paper investigates the application of a planar deployable structure with screw theory and discusses its possible applications in overconstrained lift platforms via calculating its stiffness. These platforms are all made up of a number of identical scissor-form pivoted links. Compared with their traditional counterparts, the lift platforms with planar deployable structures have higher stiffness and higher strength in applications because every lift platform is multiplane overconstrained mechanism connected by a strengthened frame at each deployable layer. In operation, these deployable structures are always symmetric about the vertical central axis connecting the moving platform and the fixed one. Therefore, the stress conditions of the links in each layer can be assumed to be identical as the lift platform is moving up and down. Prototype test illustrates the innovation of the lift mechanisms while keeping the same load capacity.

References

1.
Tur
,
J. M.
, and
Juan
,
S. H.
,
2009
, “
Tensegrity Frameworks: Dynamic Analysis Review and Open Problems
,”
Mech. Mach. Theory
,
44
(
1
), pp.
1
18
.
2.
Wei
,
G.-W.
,
Ding
,
X.-L.
, and
Dai
,
J. S.
,
2010
, “
Mobility and Geometric Analysis of the Hoberman Switch-Pitch Ball and its Variant
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031010
.
3.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2006
, “
Mobility of Overconstrained Parallel Mechanisms, Special Supplement on Spatial Mechanisms and Robot Manipulators
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
220
229
.
4.
Gan
,
D. M.
,
Dai
,
J. S.
, and
Liao
,
Q. Z.
,
2009
, “
Mobility Analysis of Two Types of Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041007
.
5.
Dai
,
J. S.
, and
Jones
,
J. R.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.
6.
Pinero
,
E. P.
,
1962
, “
Expandable Space Framing
,”
Prog. Archit.
,
43
(
6
), pp.
154
155
.
7.
Baker
,
J. E.
,
2006
, “
On Generating a Class of Foldable Six-Bar Spatial Linkages
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
374
383
.
8.
De Temmerman
,
N.
,
Marijke
,
M.
,
Van Mele
,
T.
, and
De Laet
,
L.
,
2007
, “
Design and Analysis of a Foldable Mobile Shelter System
,”
Int. J. Space Struct.
,
22
(
3
), pp.
161
168
.
9.
Warnaar
,
D. B.
, and
Chew
,
M.
,
1995
, “
Kinematic Synthesis of Deployable-Foldable Truss Structures Using Graph Theory, Part 1: Graph Generation
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
112
116
.
10.
Warnaar
,
D. B.
, and
Chew
,
M.
,
1995
, “
Kinematic Synthesis of Deployable-Foldable Truss Structures Using Graph Theory. Part 2: Generation of Deployable Truss Module Design Concepts
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
117
122
.
11.
Patel
,
J.
, and
Ananthasuresh
,
G. K.
,
2007
, “
A Kinematic Theory for Radially Foldable Planar Linkages
,”
Int. J. Solids Struct.
,
44
(
18–19
), pp.
6279
6298
.
12.
Wei
,
G.-W.
, and
Dai
,
J. S.
,
2010
, “
Geometric and Kinematic Analysis of a Seven-Bar Three-Fixed-Pivoted Compound-Joint Mechanism
,”
Mech. Mach. Theory
,
45
(
2
), pp.
170
184
.
13.
Zhao
,
J.-S.
,
Wang
,
J.-Y.
,
Chu
,
F.
,
Feng
,
Z.-J.
, and
Dai
,
J. S.
,
2011
, “
Structure Synthesis and Statics Analysis of a Foldable Stair
,”
Mech. Mach. Theory
,
46
(
7
), pp.
998
1015
.
14.
Christiansen
,
E. L.
,
Kerr
,
J. H.
,
Fuentes
,
H. M.
, and
Schneider
,
W. C.
,
1999
, “
Flexible and Deployable Meteoroid/Debris Shielding Forspacecraft
,”
Int. J. Impact Eng.
,
23
(
1
), pp.
125
136
.
15.
Wei
,
X. Z.
,
Yao
,
Y. A.
,
Tian
,
Y. B.
, and
Fang
,
R.
,
2006
, “
A New Method of Creating Expandable Structure for Spatial Objects
,”
Proc. Inst. Mech. Eng., Part C
,
220
(
12
), pp.
1813
1818
.
16.
Gan
,
W. W.
, and
Pellegrino
,
S.
,
2006
, “
Numerical Approach to the Kinematic Analysis of Deployable Structures Forming a Closed Loop
,”
Proc. Inst. Mech. Eng., Part C
,
220
(
7
), pp.
1045
1056
.
17.
Chen
,
Y.
, and
You
,
Z.
,
2007
, “
Spatial 6R Linkages Based on the Combination of Two Goldberg 5R Linkages
,”
Mech. Mach. Theory
,
42
(
11
), pp.
1484
1489
.
18.
Liu
,
S. Y.
, and
Chen
,
Y.
,
2009
, “
Myard Linkage and its Mobile Assemblies
,”
Mech. Mach. Theory
,
44
(
10
), pp.
1950
1963
.
19.
Shigley
,
J. E.
, and
Uicher
,
J. J.
,
1980
,
Theory of Machines and Mechanisms
,
McGraw-Hill
,
New York
.
20.
Qizheng
,
L.
, and
Duanling
,
L.
,
2005
, “
Mechanisms of Scaling Planar Graphs
,”
Chin. J. Mech. Eng.
,
41
(
8
), pp.
140
143
.
21.
Qizheng
,
L.
, and
Duanling
,
L.
,
2008
, “
Construction Method of Monolayer and Multilayer Mechanisms for Scaling Planar Graphs
,”
Chin. J. Mech. Eng.
,
44
(
6
), pp.
43
48
.
22.
Bai
,
G.
,
Liao
,
Q.
,
Li
,
D.
, and
Wei
,
S.
,
2013
, “
Synthesis of Scaling Mechanisms for Geometric Figures With Angulated-Straight Elements[J]
,”
Proc. Inst. Mech. Eng., Part C
,
227
(
12
), pp.
2795
2809
.
23.
Gellner
,
A.
,
2008
,
Laying the Foundation for Today's Skyscrapers
,” San Francisco Chronicle, epub, http://www.sfgate.com/homeandgarden/article/Laying-the-foundation-for-today-s-skyscrapers-3199017.php
24.
Wikipedia, 2015, “Contributions to the Physical Sciences,” http://en.wikipedia.org/wiki/Blaise_Pascal
25.
Wikipedia
,
2014
, “
Elevator
,” http://en.wikipedia.org/wiki/Elevator
26.
Wikipedia
,
2014
, “
Cherry Picker
,” http://en.wikipedia.org/wiki/Cherry_Picker
27.
Wikipedia
,
2014
, “
Scissor Lift
,” http://en.wikipedia.org/wiki/Aerial_work_platform
You do not currently have access to this content.