This paper presents the concept of variable radius drum mechanisms (VRDMs). A drum, or spool, consists of a spindle with flanges, around which a cable is wound. The cylindrical surface of an ordinary spool has a constant radius. In a variable radius drum (VRD), the radius of the spool varies along its profile. Properties of such devices are discussed, as well as the kinematic analysis and synthesis. The main contribution of the work is the theory of the VRD synthesis problem, rooted in a closed-form analytical solution. In order to highlight the benefits of VRDMs, two applications are presented and analyzed as examples. The first example consists of a mechanism which can support and guide a load along a horizontal linear path. The second example shows a solution to improve the locomotion of a legged robot. Finally, a prototype is made on the basis of the first case scenario and its performance is evaluated and discussed, showing a remarkable accuracy, with a deviation from the nominal trajectory of less than 1%.

References

References
1.
Yafei
,
L.
, and
Dapeng
,
F.
,
2012
, “
Transmission Backlash of Precise Cable Drive System
,”
J. Mech. Eng. Sci.
,
227
(
10
), pp.
2256
2267
.
2.
Ji
,
S.
,
Kim
,
S.-J.
, and
Kim
,
Y.-B.
,
2013
, “
Experimental Approach for Mooring Winch Control System Design
,”
13th International Conference on Control, Automation and Systems
(
ICCAS
), Gwangju, South Korea, Oct. 20–23, pp.
1025
1028
.
3.
Lincoln
,
J. M.
,
Lucas
,
D. L.
,
McKibbin
,
R. W.
,
Woodward
,
C. C.
, and
Bevan
,
J. E.
,
2008
, “
Reducing Commercial Fishing Deck Hazards With Engineering Solutions for Winch Design
,”
J. Saf. Res.
,
39
(
2
), pp.
231
235
.
4.
Deyao
,
Z.
,
1985
, “
Forces in the Hoisting Wire of a Crane Barge in Waves
,”
Ocean Eng.
,
12
(
1
), pp.
1
16
.
5.
Kareem
,
A.
,
Lu
,
P.
,
Finnigan
,
T.
, and
Liu
,
S.-L. V.
,
1987
, “
Aerodynamic Loads on a Typical Tension Leg Platform
,”
Ocean Eng.
,
14
(
3
), pp.
201
231
.
6.
Kilic
,
E.
, and
Dolen
,
M.
,
2014
, “
Prediction of Slip in Cable-Drum Systems Using Structured Neural Networks
,”
J. Mech. Eng. Sci.
,
228
(
3
), pp.
441
456
.
7.
Kilic
,
E.
,
Dolen
,
M.
, and
Bugra Koku
,
A.
,
2011
, “
Experimental Evaluation of Cable-Drum Systems as Linear Motion Sensors
,”
IEEE International Conference on Mechatronics
(
ICM
), Istanbul, Turkey, Apr. 13–15, pp.
666
671
.
8.
Shin
,
D.
,
Yeh
,
X.
, and
Khatib
,
O.
,
2013
, “
Circular Pulley Versus Variable Radius Pulley: Optimal Design Methodologies and Dynamic Characteristics Analysis
,”
IEEE Trans. Rob.
,
29
(
3
), pp.
766
774
.
9.
Shin
,
D.
,
Yeh
,
X.
, and
Khatib
,
O.
,
2011
, “
Variable Radius Pulley Design Methodology for Pneumatic Artificial Muscle-Based Antagonistic Actuation Systems
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), San Francisco, CA, Sept. 25–30, pp.
1830
1835
.
10.
Tidwell
,
P.
,
Bandukwala
,
N.
,
Dhande
,
S.
,
Reinholtz
,
C.
, and
Webb
,
G.
,
1994
, “
Synthesis of Wrapping Cams
,”
ASME J. Mech. Des.
,
116
(
2
), pp.
634
638
.
11.
Kilic
,
M.
,
Yazicioglu
,
Y.
, and
Kurtulus
,
D.
,
2012
, “
Synthesis of a Torsional Spring Mechanism With Mechanically Adjustable Stiffness Using Wrapping Cams
,”
Mech. Mach. Theory
,
57
, pp.
27
39
.
12.
Schmit
,
N.
, and
Okada
,
M.
,
2011
, “
Synthesis of a Non-Circular Cable Spool to Realize a Nonlinear Rotational Spring
,”
IEEE International Conference on Intelligent Robots and Systems
(
IROS
), San Francisco, CA, Sept. 25–30, pp.
762
767
.
13.
Kim
,
B.
, and
Deshpande
,
A.
,
2014
, “
Design of Nonlinear Rotational Stiffness Using a Noncircular Pulley-Spring Mechanism
,”
ASME J. Mech. Rob.
,
6
(
4
), p.
041009
.
14.
Okada
,
T.
, and
Kanade
,
T.
,
1987
, “
A Three-Wheeled Self-Adjusting Vehicle in a Pipe, Ferret-1
,”
Int. J. Rob. Res.
,
6
(
4
), pp.
60
75
.
15.
Endo
,
G.
,
Yamada
,
H.
,
Yajima
,
A.
,
Ogata
,
M.
, and
Hirose
,
S.
,
2010
, “
A Passive Weight Compensation Mechanism With a Non-Circular Pulley and a Spring
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Anchorage, AK, May 3–7, pp.
3843
3848
.
16.
Ulrich
,
N.
, and
Kumar
,
V.
,
1991
, “
Passive Mechanical Gravity Compensation for Robot Manipulators
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Sacramento, CA, Apr. 9–11, Vol.
2
, pp.
1536
1541
.
17.
Kljuno
,
E.
,
Zhu
,
J. J.
, II
,
Williams
,
R. L.
, and
Reilly
,
S. M.
,
2011
, “
A Biomimetic Elastic Cable Driven Quadruped Robot—The Robocat
,”
ASME
Paper No. IMECE2011-63534.
18.
Hirose
,
S.
,
Ikuta
,
K.
, and
Sato
,
K.
,
1988
, “
Development of a Shape Memory Alloy Actuator. Improvement of Output Performance by the Introduction of a δ-Mechanism
,”
Adv. Rob.
,
3
(
2
), pp.
89
108
.
19.
Stachel
,
H.
,
2008
, “
Gears and Belt Drives for Non-Uniform Transmission
,”
2nd European Conference on Mechanism Science
(
EUCOMES
), Cassino, Italy, Sept. 17–20, Springer, The Netherlands, pp.
415
422
.
20.
Gallina
,
P.
,
2005
, “
A New Class of Rocker-Belt Mechanisms
,”
Mech. Mach. Theory
,
40
(
8
), pp.
963
976
.
21.
Cravotta
,
R.
,
2003
, “
Flying Over the Action
,”
EDN
,
48
(
15
), pp.
30
34
.
22.
Pusey
,
J.
,
Fattah
,
A.
,
Agrawal
,
S.
, and
Messina
,
E.
,
2004
, “
Design and Workspace Analysis of a 6-6 Cable-Suspended Parallel Robot
,”
Mech. Mach. Theory
,
39
(
7
), pp.
761
778
.
23.
Hiller
,
M.
,
Fang
,
S.
,
Mielczarek
,
S.
,
Verhoeven
,
R.
, and
Franitza
,
D.
,
2005
, “
Design, Analysis and Realization of Tendon-Based Parallel Manipulators
,”
Mech. Mach. Theory
,
40
(
4
), pp.
429
445
.
You do not currently have access to this content.