Understanding the geometry of gears with skew axes is a highly demanding task, which can be eased by invoking Study's Principle of Transference. By means of this principle, spherical geometry can be readily ported into its spatial counterpart using dual algebra. This paper is based on Martin Disteli's work and on the authors' previous results, where Camus' auxiliary curve is extended to the case of skew gears. We focus on the spatial analog of one particular case of cycloid bevel gears: When the auxiliary curve is specified as a pole tangent, we obtain “pathologic” spherical involute gears; the profiles are always interpenetrating at the meshing point because of G2-contact. The spatial analog of the pole tangent, a skew orthogonal helicoid, leads to G2-contact at a single point combined with an interpenetration of the flanks. However, when instead of a line a plane is attached to the right helicoid, the envelopes of this plane under the roll-sliding of the auxiliary surface (AS) along the axodes are developable ruled surfaces. These serve as conjugate tooth flanks with a permanent line contact. Our results show that these flanks are geometrically sound, which should lead to a generalization of octoidal bevel gears, or even of bevel gears carrying teeth designed with the exact spherical involute, to the spatial case, i.e., for gears with skew axes.

References

References
1.
Blaschke
,
W.
,
1960
,
Kinematik und Quaternionen
,
VEB Deutscher Verlag der Wissenschaften
,
Berlin
.
2.
Veldkamp
,
G. R.
,
1976
, “
On the Use of Dual Number, Vectors and Matrices in Instantaneous Spatial Kinematics
,”
Mech. Mach. Theory
,
11
(
2
), pp.
141
156
.
3.
Figliolini
,
G.
,
Stachel
,
H.
, and
Angeles
,
J.
,
2007
, “
A New Look at the Ball-Disteli Diagram and Its Relevance to Spatial Gearing
,”
Mech. Mach. Theory
,
42
(
10
), pp.
1362
1375
.
4.
Disteli
,
M.
,
1911
, “
Über die Verzahnung der Hyperboloidräder mit geradlinigem Eingriff
,”
Z. Math. Phys.
,
59
(
3
), pp.
244
298
.
5.
Figliolini
,
G.
,
Stachel
,
H.
, and
Angeles
,
J.
,
2013
, “
On the Synthesis of Spatial Cycloidal Gears
,”
Meccanica
,
48
(
5
), pp.
1239
1249
.
6.
Figliolini
,
G.
,
Stachel
,
H.
, and
Angeles
,
J.
,
2013
, “
On Martin Disteli's Spatial Cycloidal Gearing
,”
Mech. Mach. Theory
,
60
(
1
), pp.
73
89
.
7.
Pottmann
,
H.
, and
Wallner
,
J.
,
2001
,
Computational Line Geometry
,
Springer-Verlag
,
Berlin
.
8.
Stachel
,
H.
,
2000
, “
Instantaneous Spatial Kinematics and the Invariants of the Axodes
,”
Ball 2000 Symposium
,
Cambridge, UK
, Paper No. 23, pp.
1
14
.
9.
Angeles
,
J.
,
2014
,
Fundamentals of Robotic Mechanical Systems: Theory, Methods, Algorithms
,
4th ed.
,
Springer
,
New York
.
10.
Disteli
,
M.
,
1914
, “
Über das Analogon der Savaryschen Formel und Konstruktion in der kinematischen Geometrie des Raumes
,”
Z. Math. Phys.
,
62
(
3
), pp.
261
309
.
11.
Do Carmo
,
M. P.
,
1976
,
Differential Geometry of Curves and Surfaces
,
Prentice Hall
,
Englewood Cliffs, NJ
.
12.
Wang
,
D. L.
,
Liu
,
J.
, and
Xiao
,
D. Z.
,
2000
, “
Geometrical Characteristics of Some Typical Constraints
,”
Mech. Mach. Theory
,
35
(
10
), pp.
1413
1430
.
13.
Dong
,
H.
,
Ting
,
K.-L.
,
Yu
,
B.
,
Liu
,
J.
, and
Wang
,
D.
,
2012
, “
Differential Contact Path and Conjugate Properties of Planar Gearing Transmission
,”
ASME J. Mech. Des.
,
134
(
6
), p.
061010
.
14.
Yu
,
B.
, and
Ting
,
K.-L.
,
2013
, “
Manifold Conjugation and Discrete Gear Design
,”
ASME
Paper No. DETC2013-13401.
15.
Müller
,
H. R.
,
1963
,
Kinematik, Sammlung Göschen
,
Walter de Gruyter
,
Berlin
.
16.
Figliolini
,
G.
,
Stachel
,
H.
, and
Angeles
,
J.
,
2015
, “
The Role of the Orthogonal Helicoid in the Generation of the Tooth Flanks of Involute-Gear Pairs With Skew Axes
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011003
.
17.
Litvin
,
F. L.
, and
Fuentes
,
A.
,
2004
,
Gear Geometry and Applied Theory
,
Cambridge University Press
,
Cambridge, UK
.
18.
Figliolini
,
G.
, and
Angeles
,
J.
,
2005
, “
Algorithms for Involute and Octoidal Bevel-Gear Generation
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
664
672
.
19.
Wang
,
D.
, and
Wang
,
W.
,
2015
,
Kinematic Differential Geometry and Saddle Synthesis of Linkages
,
Wiley, Singapore
,
Singapore
.
20.
Ting
,
K.-L.
, and
Soni
,
A. H.
,
1983
, “
Instantaneous Kinematics of a Plane in Space Motion
,”
ASME J. Mech. Des.
,
105
(
3
), pp.
552
559
.
21.
Wang
,
W.
, and
Wang
,
D.
,
2014
, “
Curvature Theory of the Envelope Curve in Two-Dimension and Envelope Surface in Three-Dimension Motion
,”
ASME J. Mech. Rob.
,
7
(
3
), p.
031019
.
22.
Phillips
,
J.
,
2003
,
General Spatial Involute Gearing
,
Springer-Verlag
,
New York
.
23.
Dooner
,
D. B.
, and
Griffis
,
M. W.
,
2007
, “
On Spatial Euler-Savary Equations for Envelopes
,”
ASME J. Mech. Des.
,
129
(
8
), pp.
865
875
.
24.
Müller
,
H. R.
,
1962
,
Sphärische Kinematik
,
VEB Deutscher Verlag der Wissenschaften
,
Berlin
.
You do not currently have access to this content.