This article introduces the design and the experimental validation of the Trackhold, a novel mechanical motion-tracker for upper limb physical rehabilitation. The Trackhold is based on a passively balanced mechanism that can approximately relieve the weight of the patient’s arm regardless of the position. The system features a novel kinematic architecture with large workspace and custom developed joint sensors providing accurate real-time measure of the upper limb posture. The design approach of the device, which went through kinetostatic and dynamic analyses, is presented and details on the employed mechatronic solutions are provided. A prototype of the Trackhold has been fabricated and functionally validated.

References

1.
Reinkensmeyer
,
D. J.
, and
Housman
,
S. J.
,
2007
, “
‘If I Can’t Do It Once, Why Do It a Hundred Times?’: Connecting Volition to Movement Success in a Virtual Environment Motivates People to Exercise the Arm After Stroke
,”
Virtual Rehabilitation, 2007
,
Venice
,
Italy
, Sept. 27–29, pp.
44
48
.
2.
Kwakkel
,
G.
,
van Peppen
,
R.
,
Wagenaar
,
R. C.
,
Dauphinee
,
S. W.
,
Richards
,
C.
,
Ashburn
,
A.
,
Miller
,
K.
,
Lincoln
,
N.
,
Partridge
,
C.
,
Wellwood
,
I.
, and
Langhorne
,
P.
,
2004
, “
Effects of Augmented Exercise Therapy Time After Stroke a Meta-Analysis
,”
Stroke
,
35
(
11
), pp.
2529
2539
.
3.
Byl
,
N. N.
,
Pitsch
,
E. A.
, and
Abrams
,
G. M.
,
2008
, “
Functional Outcomes Can Vary by Dose: Learning-Based Sensorimotor Training for Patients Stable Poststroke
,”
Neurorehabilitation Neural Repair
,
22
(
5
), pp.
494
504
.
4.
Prange
,
G. B.
,
Jannink
,
M. J.
,
Groothuis-Oudshoorn
,
C. G.
,
Hermens
,
H. J.
, and
IJzerman
,
M. J.
,
2006
, “
Systematic Review of the Effect of Robot-Aided Therapy on Recovery of the Hemiparetic Arm After Stroke
,”
J. Rehabil. Res. Dev.
,
43
(
2
), pp.
171
184
.
5.
Lum
,
P. S.
,
Taub
,
E.
,
Schwandt
,
D.
,
Postman
,
M.
,
Hardin
,
P.
, and
Uswatte
,
G.
,
2004
, “
Automated Constraint-Induced Therapy Extension (Autocite) for Movement Deficits After Stroke
,”
J. Rehabil. Res. Dev.
,
41
(
3
), pp.
249
258
.
6.
Sanchez
,
R. J.
,
Liu
,
J.
,
Rao
,
S.
,
Shah
,
P.
,
Smith
,
R.
,
Rahman
,
T.
,
Cramer
,
S. C.
,
Bobrow
,
J. E.
, and
Reinkensmeyer
,
D. J.
,
2006
, “
Automating Arm Movement Training Following Severe Stroke: Functional Exercises With Quantitative Feedback in a Gravity-Reduced Environment
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
14
(
3
), pp.
378
389
.
7.
Stienen
,
A. H.
,
Hekman
,
E. E.
,
van der Kooij
,
H.
,
Ellis
,
M. D.
, and
Dewald
,
J. P.
,
2009
, “
Aspects of Weight-Support Mechanisms in Rehabilitation Robotics
,”
World Congress on Medical Physics and Biomedical Engineering
, Munich, Germany, Sept. 7–12,
Springer
,
Berlin
, pp.
392
394
.
8.
Garrec
,
P.
,
Friconneau
,
J.
,
Measson
,
Y.
, and
Perrot
,
Y.
,
2008
, “
ABLE, an Innovative Transparent Exoskeleton for the Upper-Limb
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2008
), Nice, France, Sept. 22–26, pp.
1483
1488
.
9.
Frisoli
,
A.
,
Borelli
,
L.
,
Montagner
,
A.
,
Marcheschi
,
S.
,
Procopio
,
C.
,
Salsedo
,
F.
,
Bergamasco
,
M.
,
Carboncini
,
M.
,
Tolaini
,
M.
, and
Rossi
,
B.
,
2007
, “
Arm Rehabilitation With a Robotic Exoskeleleton in Virtual Reality
,”
IEEE 10th International Conference on Rehabilitation Robotics
(
ICORR 2007
), Noordwijk, The Netherlands, June 13–15, pp.
631
642
.
10.
Gijbels
,
D.
,
Lamers
,
I.
,
Kerkhofs
,
L.
,
Alders
,
G.
,
Knippenberg
,
E.
, and
Feys
,
P.
,
2011
, “
The Armeo Spring as Training Tool to Improve Upper Limb Functionality in Multiple Sclerosis: A Pilot Study
,”
J. Neuroeng. Rehabil.
,
8
(
5
), p.
5
.
11.
Herder
,
J.
,
2005
, “
Development of a Statically Balanced Arm Support: ARMON
,”
9th International Conference on Rehabilitation Robotics
(
ICORR 2005
), Chicago, June 28–July 1, pp.
281
286
.
12.
Prange
,
G.
,
Jannink
,
M.
,
Stienen
,
A.
,
van der Kooij
,
H.
,
Ijzerman
,
M.
, and
Hermens
,
H.
,
2009
, “
Influence of Gravity Compensation on Muscle Activation Patterns During Different Temporal Phases of Arm Movements of Stroke Patients
,”
Neurorehabilitation Neural Repair
,
23
(
5
), pp.
478
485
.
13.
Kloosterman
,
M.
,
Snoek
,
G. J.
,
Kouwenhoven
,
M.
,
Nene
,
A. V.
, and
Jannink
,
M.
,
2010
, “
Influence of Gravity Compensation on Kinematics and Muscle Activation Patterns During Reach and Retrieval in Subjects With Cervical Spinal Cord Injury: An Explorative Study
,”
J. Rehabil. Res. Dev.
,
47
(
7
), pp.
617
628
.
14.
Ellis
,
M.
,
Sukal
,
T.
,
DeMott
,
T.
, and
Dewald
,
J.
,
2007
, “
ACT3D Exercise Targets Gravity-Induced Discoordination and Improves Reaching Work Area in Individuals With Stroke
,”
IEEE 10th International Conference on Rehabilitation Robotics
(
ICORR 2007
),
Noordwijk
,
The Netherlands
, June 13–15, pp.
890
895
.
15.
Kisner
,
C.
, and
Colby
,
L. A.
,
2012
,
Therapeutic Exercise: Foundations and Techniques
,
FA Davis
,
Philadelphia, PA
.
16.
Stienen
,
A. H.
,
Hekman
,
E. E.
,
Prange
,
G. B.
,
Jannink
,
M. J.
,
van der Helm
,
F. C.
, and
van der Kooij
,
H.
,
2009
, “
Freebal: Design of a Dedicated Weight-Support System for Upper-Extremity Rehabilitation
,”
ASME J. Med. Devices
,
3
(
4
), p.
041009
.
17.
Lenzo
,
B.
,
Frisoli
,
A.
,
Salsedo
,
F.
, and
Bergamasco
,
M.
,
2014
, “
New Gravity Balancing Technique and Hybrid Actuation for Spatial Serial Manipulators
,”
Advances in Robot Kinematics
,
Springer
,
Cham, Switzerland
, pp.
419
427
.
18.
Sciavicco
,
L.
, and
Villani
,
L.
,
2009
,
Robotics: Modelling, Planning and Control
,
Springer
,
London
.
19.
Clauser
,
C. E.
,
McConville
,
J. T.
, and
Young
,
J. W.
,
1969
, “
Weight, Volume, and Center of Mass of Segments of the Human Body
,”
Aerospace Medical Research Laboratory
,
Wright-Patterson AFB, OH
, Technical Report No. AD 710622.
20.
Hartenberg
,
R.
, and
Denavit
,
J.
,
1964
,
Kinematic Synthesis of Linkages
,
McGraw-Hill
,
New York
.
21.
Klopčar
,
N.
, and
Lenarčič
,
J.
,
2005
, “
Kinematic Model for Determination of Human Arm Reachable Workspace
,”
Meccanica
,
40
(
2
), pp.
203
219
.
22.
Xu
,
P.
,
Jingjun
,
Y.
, and
Guanghua
,
B. S. Z.
,
2007
, “
Enumeration and Type Synthesis of One-DOF Remote-Center-of-Motion Mechanisms
,”
The 12th World Congress in Mechanism an Machine Science
, Besancon, France, June 18–21, pp.
20
26
.
23.
Fontana
,
M.
,
Fabio
,
S.
,
Marcheschi
,
S.
, and
Bergamasco
,
M.
,
2013
, “
Haptic Hand Exoskeleton for Precision Grasp Simulation
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041014
.
24.
Bergamasco
,
M.
,
Fontana
,
M.
, and
Salsedo
,
F.
,
2012
, “
Device to Relieve the Articular Efforts Resulting From the Weight of a Human Limb
,” WO Patent Application No. PCT/IB2011/053,986.
25.
NaturalPoint, 2015, “OptiTrack,”
NaturalPoint Inc.
,
Corvallis, OR
, accessed Sept. 4,
2014
, http://www.naturalpoint.com/optitrack/
26.
Tarri
,
F.
,
Fontana
,
M.
,
Salsedo
,
F.
,
Marcheschi
,
S.
, and
Bergamasco
,
M.
,
2009
, “
Modular Weight-Balanced Mechanical Tracker for Portable Haptics
,”
IEEE International Conference on Robotics and Automation
(
ICRA’09
), Kobe-Osaka, Japan, May 12–17, pp.
1473
1478
.
27.
Fontana
,
M.
,
Salsedo
,
F.
, and
Bergamasco
,
M.
,
2013
, “
Novel Magnetic Sensing Approach With Improved Linearity
,”
Sensors
,
13
(
6
), pp.
7618
7632
.
28.
ATI, 2015, “
Multi-Axis Force/Torque Sensors
,” ATI Industrial Automation, Apex, NC, accessed Sept. 4,
2014
, http://www.ati-ia.com/products/ft/sensors.aspx
You do not currently have access to this content.