Robotic hands are typically too rigid to react against unexpected impacts and disturbances in order to prevent damage. Human hands have great versatility and robustness due, in part, to the passive compliance at the hand joints. In this paper, we present a novel design for joint with passive compliance that is inspired by biomechanical properties of the human hands. The design consists of a compliant material and a set of pulleys that rotate and stretch the material as the joint rotates. We created six different compliant materials, and we optimized the joint design to match the desired humanlike compliance. We present two design features that allow for the tuning of the joint torque profile, namely, a pretension mechanism to increase pretension of the compliant material, and a design of varying pulley configuration. We built a prototype for the new joint by using additive manufacturing to fabricate the design components and built a test-bed with a force sensor and a servo motor. Experimental results show that the joint exhibits a nonlinear, double exponential joint compliance with all six compliant materials. The design feature involving variable pulley configurations is effective in adjusting the slope of joint torque during the joint rotation while the pretension mechanism showed only a limited effect on increasing the torque amplitude. Overall, with its small size, light weight, low friction, and humanlike joint compliance, the presented joint design is ready for implementation in robotic hands.

References

References
1.
Kuo
,
P.-H.
, and
Deshpande
,
A. D.
,
2012
, “
Muscle-Tendon Units Provide Limited Contributions to the Passive Stiffness of the Index Finger Metacarpophalangeal Joint
,”
J. Biomech.
,
45
(
15
), pp.
2531
2538
.
2.
Haddadin
,
S.
,
Schäffer
,
A.
, and
Hirzinger
,
G.
,
2007
, “
Safety Evaluation of Physical Human-Robot Interaction Via Crash-Testing
,”
Robotics: Science and Systems Conference (RSS2007)
, Atlanta, GA, June 27–30, pp.
217
224
.
3.
Accoto
,
D.
,
Tagliamonte
,
N. L.
,
Carpino
,
G.
,
Sergi
,
F.
,
Di Palo
,
M.
, and
Guglielmelli
,
E.
,
2012
, “
pVEJ: A Modular Passive Viscoelastic Joint for Assistive Wearable Robots
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Saint Paul, MN, May 14–18,, pp.
3361
3366
.
4.
Carpino
,
G.
,
Accoto
,
D.
,
Di Palo
,
M.
,
Tagliamonte
,
N.
,
Sergi
,
F.
, and
Guglielmelli
,
E.
,
2011
, “
Design of a Rotary Passive Viscoelastic Joint for Wearable Robots
,”
IEEE International Conference on Rehabilitation Robotics
(
ICORR
), Zurich, Switzerland, June 29–July 1, pp.
1
6
.
5.
English
,
C.
, and
Russell
,
D.
,
1999
, “
Implementation of Variable Joint Stiffness Through Antagonistic Actuation Using Rolamite Springs
,”
Mech. Mach. Theory
,
34
(
1
), pp.
27
40
.
6.
Laffranchi
,
M.
,
Tsagarakis
,
N.
, and
Caldwell
,
D.
,
2011
, “
A Compact Compliant Actuator (Compact) With Variable Physical Damping
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 9–13, pp.
4644
4650
.
7.
Migliore
,
S. A.
,
Brown
,
E. A.
, and
DeWeerth
,
S. P.
,
2005
, “
Biologically Inspired Joint Stiffness Control
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Apr. 18–22, pp.
4508
4513
.
8.
Eiberger
,
O.
,
Haddadin
,
S.
,
Weis
,
M.
,
Albu-Schaffer
,
A.
, and
Hirzinger
,
G.
,
2010
, “
On Joint Design With Intrinsic Variable Compliance: Derivation of the DLR QA-Joint
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Anchorage, AK, May 3–7, pp.
1687
1694
.
9.
Wolf
,
S.
, and
Hirzinger
,
G.
,
2008
, “
A New Variable Stiffness Design: Matching Requirements of the Next Robot Generation
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Pasadena, CA, May 19–23, pp.
1741
1746
.
10.
Albu-Schaffer
,
A.
,
Eiberger
,
O.
,
Grebenstein
,
M.
,
Haddadin
,
S.
,
Ott
,
C.
,
Wimbock
,
T.
,
Wolf
,
S.
, and
Hirzinger
,
G.
,
2008
, “
Soft Robotics
,”
IEEE Rob. Autom. Mag.
,
15
(
3
), pp.
20
30
.
11.
Grebenstein
,
M.
, and
van der Smagt
,
P.
,
2008
, “
Antagonism for a Highly Anthropomorphic Hand–Arm System
,”
Adv. Rob.
,
22
(
1
), pp.
39
55
.
12.
Jafari
,
A.
,
Tsagarakis
,
N.
,
Sardellitti
,
I.
, and
Caldwell
,
D.
,
2012
, “
How Design Can Affect the Energy Required to Regulate the Stiffness in Variable Stiffness Actuators
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Saint Paul, MN, May 14–18, pp.
2792
2797
.
13.
Pratt
,
G. A.
, and
Williamson
,
M. M.
,
1995
, “
Series Elastic Actuators
,”
IEEE/RSJ International Conference of Intelligent Robots and Systems
(
IROS
), Pittsburgh, PA, Aug. 5–9, Vol.
1
, pp.
399
406
.
14.
Ham
,
R. V.
,
Sugar
,
T.
,
Vanderborght
,
B.
,
Hollander
,
K.
, and
Lefeber
,
D.
,
2009
, “
Compliant Actuator Designs
,”
IEEE Rob. Autom. Mag.
,
16
(
3
), pp.
81
94
.
15.
González Rodríguez
,
A.
,
Chacón
,
J.
,
Donoso
,
A.
, and
González Rodríguez
,
A.
,
2011
, “
Design of an Adjustable-Stiffness Spring: Mathematical Modeling and Simulation, Fabrication and Experimental Validation
,”
Mech. Mach. Theory
,
46
(
12
), pp.
1970
1979
.
16.
Berselli
,
G.
,
Guerra
,
A.
,
Vassura
,
G.
, and
Andrisano
,
A. O.
,
2014
, “
An Engineering Method for Comparing Selectively Compliant Joints in Robotic Structures
,”
IEEE/ASME Trans. Mechatronics
,
19
(
6
), pp.
1882
1895
.
17.
Melchiorri
,
C.
,
Palli
,
G.
,
Berselli
,
G.
, and
Vassura
,
G.
,
2013
, “
Development of the UB Hand IV: Overview of Design Solutions and Enabling Technologies
,”
IEEE Rob. Autom. Mag.
,
20
(
3
), pp.
72
81
.
18.
Berselli
,
G.
,
Piccinini
,
M.
, and
Vassura
,
G.
,
2011
, “
Comparative Evaluation of the Selective Compliance in Elastic Joints for Robotic Structures
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 9–13, pp.
4626
4631
.
19.
Gaiser
,
I. N.
,
Pylatiuk
,
C.
,
Schulz
,
S.
,
Kargov
,
A.
,
Oberle
,
R.
, and
Werner
,
T.
,
2009
, “
The Fluidhand III: A Multifunctional Prosthetic Hand
,”
JPO: J. Prosthetics and Orthotics
,
21
(
2
), pp.
91
96
.
20.
Connolly
,
C.
,
2008
, “
Prosthetic Hands From Touch Bionics
,”
Ind. Rob.—Int. J.
,
35
(
4
), pp.
290
293
.
21.
Odhner
,
L. U.
,
Jentoft
,
L. P.
,
Claffee
,
M. R.
,
Corson
,
N.
,
Tenzer
,
Y.
,
Ma
,
R. R.
,
Buehler
,
M.
,
Kohout
,
R.
,
Howe
,
R. D.
, and
Dollar
,
A. M.
,
2014
, “
A Compliant, Underactuated Hand for Robust Manipulation
,”
Int. J. Rob. Res.
,
33
(
5
), pp.
736
752
.
22.
Dollar
,
A. M.
, and
Howe
,
R. D.
,
2010
, “
The Highly Adaptive SDM Hand: Design and Performance Evaluation
,”
Int. J. Rob. Res.
,
29
(
5
), pp.
585
597
.
23.
Xu
,
Z.
,
Kumar
,
V.
,
Matsuoka
,
Y.
, and
Todorov
,
E.
,
2012
, “
Design of an Anthropomorphic Robotic Finger System With Biomimetic Artificial Joints
,”
4th IEEE, RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics
(
BioRob
), Rome, Italy, June 24–27, pp.
568
574
.
24.
Schepelmann
,
A.
,
Geberth
,
K. A.
, and
Geyer
,
H.
,
2014
, “
Compact Nonlinear Springs With User Defined Torque-Deflection Profiles for Series Elastic Actuators
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Hong Kong, May 30–June 7, pp.
3411
3416
.
25.
Pfeifer
,
R.
,
Lungarella
,
M.
, and
Iida
,
F.
,
2012
, “
The Challenges Ahead for Bio-Inspired ‘Soft’ Robotics
,”
Commun. ACM
,
55
(
11
), pp.
76
87
.
26.
Lantada
,
A. D.
, and
Morgado
,
P. L.
,
2012
, “
Rapid Prototyping for Biomedical Engineering: Current Capabilities and Challenges
,”
Annu. Rev. Biomed. Eng.
,
14
, pp.
73
96
.
27.
Cutkosky
,
M. R.
, and
Kim
,
S.
,
2009
, “
Design and Fabrication of Multi-Material Structures for Bio-Inspired Robots
,”
Philos. Trans. R. Soc. A
,
367
(
1894
), pp.
1799
1813
.
You do not currently have access to this content.