Optical and magnetic encoders are widely used to measure joint angles. These sensors are required to be installed at the axes of rotation (joint centers). However, microelectromechanical system (MEMS) accelerometer and gyroscope-based joint angle measurement sensors possess the advantage of being flexible with regard to the point of installation. Inertial measurement units (IMUs) are capable of providing orientation and are also used for joint angle estimation. They conventionally fuse gyroscope and accelerometer data using Kalman filter-like algorithm to estimate the joint angles. This research presents a novel approach of measuring joint parameters—joint angles, angular velocities, and accelerations, of two links joined by revolute or universal joint. The gravity-invariant vestibular dynamic inclinometer (VDI) and planar VDI (pVDI) are used on each link to measure the joint parameters of links joined by revolute and universal joints, respectively. The VDI consists of two dual-axis accelerometers and an uniaxial gyroscope, while the pVDI consists of four strategically placed dual-axis accelerometers and a triaxial gyroscope. The measurements of joint parameters using the presented algorithms are independent of integration errors/drift, do not require knowledge of robot dynamics, and are computationally less burdensome.

References

References
1.
Cheng
,
P.
, and
Oelmann
,
B.
,
2010
, “
Joint-Angle Measurement Using Accelerometers and Gyroscopes—A Survey
,”
IEEE Trans. Instrum. Meas.
,
59
(
2
), pp.
404
414
.
2.
Tong
,
K.
, and
Granat
,
M.
,
1999
, “
A Practical Gait Analysis System Using Gyroscopes
,”
Med. Eng. Phys.
,
21
(
2
), pp.
87
94
.
3.
Williamson
,
R.
, and
Andrews
,
B.
,
2001
, “
Detecting Absolute Human Knee Angle and Angular Velocity Using Accelerometers and Rate Gyroscopes
,”
Med. Biol. Eng. Comput.
,
39
(
3
), pp.
294
302
.
4.
Willemsen
,
A.
,
Van Alste
,
J.
, and
Boom
,
H.
,
1990
, “
Real-Time Gait Assessment Utilizing a New Way of Accelerometry
,”
J. Biomech.
,
23
(
8
), pp.
859
863
.
5.
Miyazaki
,
S.
,
1997
, “
Long-Term Unrestrained Measurement of Stride Length and Walking Velocity Utilizing a Piezoelectric Gyroscope
,”
IEEE Trans. Biomed. Eng.
,
44
(
8
), pp.
753
759
.
6.
Moe-Nilssen
,
R.
,
1998
, “
A New Method for Evaluating Motor Control in Gait Under Real-Life Environmental Conditions. Part 1—The Instrument
,”
Clin. Biomech.
,
13
(
4–5
), pp.
320
327
.
7.
Moe-Nilssen
,
R.
, and
Helbostad
,
J.
,
2002
, “
Trunk Accelerometry as a Measure of Balance Control During Quiet Standing
,”
Gait Posture
,
16
(
1
), pp.
60
68
.
8.
Pappas
,
I.
,
Popovic
,
M.
,
Keller
,
T.
,
Dietz
,
V.
, and
Morari
,
M.
,
2001
, “
A Reliable Gait Phase Detection System
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
9
(
2
), pp.
113
125
.
9.
Kurata
,
S.
,
Makikawa
,
M.
,
Kobayashi
,
H.
,
Takahashi
,
A.
, and
Tokue
,
R.
,
1998
, “
Joint Motion Monitoring by Accelerometers Set at Both Near Sides Around the Joint
,”
20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
IEMBS
), Hong Kong, Oct. 29–Nov. 1, Vol. 4, pp.
1936
1939
.
10.
Ghassemi
,
F.
,
Tafazoli
,
S.
,
Lawrence
,
P.
, and
Hashtrudi-Zaad
,
K.
,
2007
, “
Design and Calibration of an Integration-Free Accelerometer-Based Joint-Angle Sensor
,”
IEEE Trans. Instrum. Meas.
,
57
(
1
), pp.
150
159
.
11.
Ghassemi
,
F.
,
Tafazoli
,
S.
,
Lawrence
,
P.
, and
Hashtrudi-Zaad
,
K.
,
2002
, “
An Accelerometer-Based Joint Angle Sensor for Heavy-Duty Manipulators
,”
IEEE International Conference on Robotics and Automation
(
ICRA '02
), Washington, DC, May 11–15, Vol. 2, pp.
1771
1776
.
12.
Willemsen
,
A.
,
Frigo
,
C.
, and
Boom
,
H.
,
2002
, “
Lower Extremity Angle Measurement With Accelerometers-Error and Sensitivity Analysis
,”
IEEE Trans. Biomed. Eng.
,
38
(
12
), pp.
1186
1193
.
13.
King
,
A.
,
1998
, “
Inertial Navigation-Forty Years of Evolution
,”
GEC Rev.
,
13
(
3
), pp.
140
149
, available at: http://www.imar-navigation.de/downloads/papers/inertial_navigation_introduction.pdf
14.
Vaganay
,
J.
,
Aldon
,
M.
, and
Fournier
,
A.
,
1993
, “
Mobile Robot Attitude Estimation by Fusion of Inertial Data
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Atlanta, GA, May 2–6, pp.
277
282
.
15.
Foxlin
,
E.
,
1996
, “
Inertial Head-Tracker Sensor Fusion by a Complementary Separate-Bias Kalman Filter
,”
IEEE Virtual Reality Annual International Symposium
(
VRAIS
), Santa Clara, CA, Mar. 30–Apr. 3, pp.
185
194
.
16.
Luinge
,
H.
, and
Veltink
,
P.
,
2005
, “
Measuring Orientation of Human Body Segments Using Miniature Gyroscopes and Accelerometers
,”
Med. Biol. Eng. Comput.
,
43
(
2
), pp.
273
282
.
17.
Luinge
,
H.
, and
Veltink
,
P.
,
2004
, “
Inclination Measurement of Human Movement Using a 3-D Accelerometer With Autocalibration
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
12
(
1
), pp.
112
121
.
18.
Roetenberg
,
D.
,
2006
, “
Inertial and Magnetic Sensing of Human Motion
,” Ph.D. thesis,
University of Twente, Enschede
,
The Netherlands
.
19.
Baerveldt
,
A.
, and
Klang
,
R.
,
1997
, “
A Low-Cost and Low-Weight Attitude Estimation System for an Autonomous Helicopter
,”
IEEE International Conference on Intelligent Engineering Systems
(
INES '97
), Budapest, Sept. 15–17, pp.
391
395
.
20.
Nebot
,
E.
, and
Durrant-Whyte
,
H.
,
1999
, “
Initial Calibration and Alignment of Low-Cost Inertial Navigation Units for Land Vehicle Applications
,”
J. Rob. Syst.
,
16
(
2
), pp.
81
92
.
21.
Algrain
,
M.
, and
Saniie
,
J.
,
1991
, “
Estimation of 3D Angular Motion Using Gyroscopes and Linear Accelerometers
,”
IEEE Trans. Aerosp. Electron. Syst.
,
27
(
6
), pp.
910
920
.
22.
Laurens
,
J.
, and
Droulez
,
J.
,
2007
, “
Bayesian Processing of Vestibular Information
,”
Biol. Cybernet.
,
96
(
4
), pp.
389
404
.
23.
Bachmann
,
E. R.
,
2000
, “
Inertial and Magnetic Tracking of Limb Segment Orientation for Inserting Humans Into Synthetic Environments
,” Ph.D. thesis,
Naval Postgraduate School
,
Monterey, CA
.
24.
Tahboub
,
K.
,
2008
, “
Optimal Estimation of Body Angular Velocity Based on Otolith-Canal Interaction
,”
16th Mediterranean Conference on Control and Automation
(
MED
), Ajaccio, France, June 25–27, pp.
848
853
.
25.
Veltink
,
P.
,
Luinge
,
H.
,
Kooi
,
B.
,
Baten
,
C.
,
Slycke
,
P.
,
Olthuis
,
W.
, and
Bergveld
,
P.
,
2001
, “
The Artificial Vestibular System-Design of a Tri-Axial Inertial Sensor System and Its Application in the Study of Human Movement
,” Symposium of the International Society for Postural and Gait Research (
ISPG 2001
), Maastricht, The Netherlands, June 23–27.
26.
Patane
,
F.
,
Laschi
,
C.
,
Miwa
,
H.
,
Guglielmelli
,
E.
,
Dario
,
P.
, and
Takanishi
,
A.
,
2004
, “
Design and Development of a Biologically-Inspired Artificial Vestibular System for Robot Heads
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2004
), Sendai, Japan, Sept. 28–Oct. 2, Vol.
2
, pp.
1317
1322
.
27.
Xsens
,
2011
, “
MVN Biomech
,” Xsens North America, Inc., Culver City, CA, http://www.xsens.com
28.
Vikas
,
V.
, and
Crane
,
C. D.
,
2011
, “
Inclination Parameter Estimation for Manipulator and Humanoid Robot Links
,”
ASME
Paper No. DETC2011-48221.
29.
Vikas
,
V.
, and
Crane
,
C.
,
2015
, “
Bioinspired Dynamic Inclination Measurement Using Inertial Sensors
,”
Bioinspiration Biomimetics
,
10
(
3
), p.
036003
.
30.
Vikas
,
V.
, and
Crane
,
C. D.
,
2010
, “
Inclination Estimation and Balance of Robot Using Vestibular Dynamic Inclinometer
,”
10th IEEE/RAS International Conference on Humanoid Robots
(
Humanoids
), Nashville, TN, Dec. 6–8, pp.
245
250
.
31.
Vikas
,
V.
, and
Crane
,
C. D.
,
2013
, “
Measurement of Robot Link Joint Parameters Using Multiple Accelerometers and Gyroscopes
,”
ASME
Paper No. DETC2013-12741.
32.
Murray
,
R. M.
, and
Sastry
,
S. S.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
, Boca Raton, FL.
33.
Frosio
,
I.
,
Pedersini
,
F.
, and
Borghese
,
N.
,
2009
, “
Autocalibration of MEMS Accelerometers
,”
IEEE Trans. Instrum. Meas.
,
58
(
6
), pp.
2034
2041
.
You do not currently have access to this content.