The paper deals with the evaluation of acceleration of redundant and nonredundant parallel manipulators. The dynamic model of three degrees-of-freedom (3DOF) parallel manipulator is derived by using the virtual work principle. Based on the dynamic model, a measure is proposed for the acceleration evaluation of the redundant parallel manipulator and its nonredundant counterpart. The measure is designed on the basis of the maximum acceleration of the mobile platform when one actuated joint force is unit and other actuated joint forces are less than or equal to a unit force. The measure for evaluation of acceleration can be used to evaluate the acceleration of both redundant parallel manipulators and nonredundant parallel manipulators. Furthermore, the acceleration of the 4-PSS-PU parallel manipulator and its nonredundant counterpart are compared.

References

References
1.
O'Brien
,
J. F.
, and
Wen
,
J. T.
,
1999
, “
Redundant Actuation for Improving Kinematic Manipulability
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Detroit, MI, May 10–15, pp.
1520
1523
.
2.
Muller
,
A.
, and
Hufnagel
,
T.
,
2012
, “
Model-Based Control of Redundantly Actuated Parallel Manipulators in Redundant Coordinates
,”
Rob. Auton. Syst.
,
60
(
1
), pp.
563
571
.
3.
Abedinnasab
,
M. H.
, and
Vossoughi
,
G. R.
,
2009
, “
Analysis of a 6-DOF Redundantly Actuated 4-Legged Parallel Mechanism
,”
Nonlinear Dyn.
,
58
(
4
), pp.
611
622
.
4.
Sadjadian
,
H.
, and
Taghirad
,
H. D.
,
2006
, “
Kinematic, Singularity and Stiffness Analysis of the Hydraulic Shoulder: A 3-DOF Redundant Parallel Manipulator
,”
Adv. Rob.
,
20
(
7
), pp.
763
781
.
5.
Yi
,
B.-J.
,
Oh
,
S.-R.
, and
Suh
, I
. H.
,
1999
, “
Five-Bar Finger Mechanism Involving Redundant Actuators: Analysis and Its Applications
,”
IEEE Trans. Rob. Autom.
,
15
(
6
), pp.
1001
1010
.
6.
Wu
,
J.
,
Wang
,
J. S.
,
Wang
,
L. P.
, and
Li
,
T. M.
,
2009
, “
Dynamics and Control of a Planar 3-DOF Parallel Manipulator With Actuation Redundancy
,”
Mech. Mach. Theory
,
44
(
4
), pp.
835
849
.
7.
Kim
,
J.
,
Park
,
F. C.
,
Ryu
,
S. J.
,
Kim
,
J.
,
Hwang
,
J. C.
,
Park
,
C.
, and
Iurascu
,
C. C.
,
2001
, “
Design and Analysis of a Redundantly Actuated Parallel Mechanism for Rapid Machining
,”
IEEE Trans. Rob. Autom.
,
17
(
4
), pp.
423
434
.
8.
Li
,
Y. W.
,
Wang
,
J. S.
,
Liu
,
X.-J.
, and
Wang
,
L.-P.
,
2010
, “
Dynamic Performance Comparison and Counterweight Optimization of Two 3-DOF Parallel Manipulators for a New Hybrid Machine Tool
,”
Mech. Mach. Theory
,
45
(
11
), pp.
1668
1680
.
9.
Wu
,
J.
,
Li
,
T. M.
,
Wang
,
J. S.
, and
Wang
,
L. P.
,
2013
, “
Stiffness and Natural Frequency of a 3-DOF Parallel Manipulator With Consideration of Additional Leg Candidates
,”
Rob. Auton. Syst.
,
61
(
8
), pp.
868
875
.
10.
Staicu
,
S.
,
2009
, “
Inverse Dynamics of the 3-PRR Planar Parallel Robot
,”
Rob. Auton. Syst.
,
57
(
5
), pp.
556
563
.
11.
Wu
,
J.
,
Wang
,
D.
, and
Wang
,
L.
,
2015
, “
A Control Strategy of a 2-DOF Heavy Duty Parallel Manipulator
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
6
), p.
061007
.
12.
Zhao
,
Y. J.
,
2012
, “
Dynamic Performance Evaluation of a Three Translational Degrees of Freedom Parallel Robot
,”
Int. J. Rob. Autom.
,
27
(
1
), pp.
31
40
.
13.
Wu
,
J.
,
Chen
,
X.
,
Wang
,
L.
, and
Liu
,
X.
,
2014
, “
Dynamic Load-Carrying Capacity of a Novel Redundantly Actuated Parallel Conveyor
,”
Nonlinear Dyn.
,
78
(
1
), pp.
241
250
.
14.
Asada
,
H.
,
1983
, “
A Geometrical Representation of Manipulator Dynamics and Its Application to Arm Design
,”
ASME J. Dyn. Syst., Meas., Control
,
105
(
3
), pp.
131
135
.
15.
Yoshikawa
,
T.
,
1985
, “
Dynamic Manipulability of Robot Manipulators
,”
J. Rob. Syst.
,
2
(
1
), pp.
113
124
.
16.
Khatib
,
O.
,
1995
, “
Inertial Properties in Robotic Manipulation: An Object-Level Framework
,”
Int. J. Rob. Res.
,
13
(
1
), pp.
13
36
.
17.
Tadokoro
,
S.
,
Kimura
,
I.
, and
Takamori
,
T.
,
1991
, “
A Measure for Evaluation of Dynamic Dexterity Based on a Stochastic Interpretation of Manipulator Motion
,”
5th International Conference on Advanced Robotics
(
91 ICAR
), Pisa, Italy, June 19–22, pp.
509
514
.
18.
Li
,
M.
,
Huang
,
T.
,
Mei
,
J. P.
,
Zhao
,
X. M.
,
Chetwynd
,
D. G.
, and
Hu
,
S. J.
,
2005
, “
Dynamic Formulation and Performance Comparison of the 3-DOF Modules of Two Reconfigurable PKMs: The Tricept and the Trivariant
,”
ASME J. Mech. Des.
,
127
(
6
), pp.
1129
1136
.
19.
Xie
,
F. G.
,
Liu
,
X. J.
,
Chen
,
X.
, and
Wang
,
J. S.
,
2011
, “
Optimum Kinematic Design of a 3-DOF Parallel Kinematic Manipulator With Actuation Redundancy
,”
4th International Conference in Intelligent Robotics and Applications
(
ICIRA 2011
), Aachen, Germany, Dec. 6–8, pp.
250
259
.
20.
Liu
,
X. J.
,
Wang
,
L. P.
,
Xie
,
F. G.
, and
Bonev
, I
. A.
,
2010
, “
Design of Three-Axis Articulated Tool Head With Parallel Kinematics Achieving Desired Motion/Force Transmission Characteristics
,”
ASME J. Manuf. Sci. Eng.
,
132
(
2
), p.
021009
.
21.
Merlet
,
J. P.
,
1996
, “
Redundant Parallel Manipulators
,”
Lab. Rob. Autom.
,
8
(
1
), pp.
17
24
.
22.
Zhao
,
Y. J.
, and
Gao
,
F.
,
2009
, “
Dynamic Performance Comparison of the 8PSS Redundant Parallel Manipulator and Its Non-Redundant Counterpart—The 6PSS Parallel Manipulator
,”
Mech. Mach. Theory
,
44
(
5
), pp.
991
1008
.
23.
Shiller
,
Z.
, and
Sundar
,
S.
,
1991
, “
Design of Robotic Manipulators for Optimal Dynamic Performance
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Sacramento, CA, Apr. 9–11, pp.
344
349
.
You do not currently have access to this content.