We put forward a novel proposition that a mechanism can move in a constant direction and change its moving directions only by one actuator and construct a single-DOF (degree of freedom) ground mobile mechanism based on the well-known Schatz mechanism. This ground mobile Schatz mechanism has six links, one of which is designed as a spoke octahedron and an other one as a tail link. When the actuator rotates in one direction, the spoke octahedron can roll on the ground to let the ground mobile Schatz mechanism to move in a straight line pushed by the tail link. When the actuator rotates in the opposite direction, the tail link can be lifted to change its landing point and the relative position between it and the spoke octahedron, then the spoke octahedron can roll in another direction pushed by the tail link. In addition, it is also an untraditional application of the Schatz mechanism that it is used as a novel ground mobile mechanism. Locomotion analysis, gait planning and stability analysis are performed, respectively, and a prototype is developed and tested.

References

References
1.
Bertrand
,
S.
,
Bruneau
,
O.
,
Ouezdou
,
F. B.
, and
Alfayad
,
S.
,
2012
, “
Closed-Form Solutions of Inverse Kinematic Models for the Control of a Biped Robot With 8 Active Degrees of Freedom Per Leg
,”
Mech. Mach. Theory
,
49
, pp.
117
140
.
2.
Gomez
,
N.
,
Wu
,
J.
,
Shi
,
M.
, and
Tosunoglu
,
S.
,
2006
, “
Sprainy: Design and Prototype Development of an 8-Degree-of-Freedom Walking Biped Robot
,”
Florida Conference on Recent Advances in Robotics (FCRAR 2006)
, Miami, May 25–26.
3.
Raibert
,
M.
,
Blankespoor
,
K.
,
Nelson
,
G.
,
Playter
,
R.
, and
Team
,
T. B.
,
2008
, “
BigDog, the Rough-Terrain Quadruped Robot
,”
17th World Congress of the International Federation of Automatic Control
, Seoul, Korea, July 6–11, pp.
10822
10825
.
4.
Bayraktaroglu
,
Z. Y.
,
2009
, “
Snake-Like Locomotion: Experimentations With a Biologically Inspired Wheel-Less Snake Robot
,”
Mech. Mach. Theory
,
44
(
3
), pp.
591
602
.
5.
Chen
,
L.
,
Ma
,
S.
,
Wang
,
Y.
,
Li
,
B.
, and
Duan
,
D.
,
2007
, “
Design and Modelling of a Snake Robot in Traveling Wave Locomotion
,”
Mech. Mach. Theory
,
42
(
12
), pp.
1632
1642
.
6.
Crespi
,
A.
,
Badertscher
,
A.
,
Guignard
,
A.
, and
Ijspeert
,
A. J.
,
2005
, “
AmphiBot I: An Amphibious Snake-Like Robot
,”
Rob. Auton. Syst.
,
50
(
4
), pp.
163
175
.
7.
Joshi
,
V. A.
,
Banavar
,
R. N.
, and
Hippalgaonkar
,
R.
,
2010
, “
Design and Analysis of a Spherical Mobile Robot
,”
Mech. Mach. Theory
,
45
(
2
), pp.
130
136
.
8.
Park
,
F. C.
,
1991
, “
On the Optimal Kinematic Design of Spherical and Spatial Mechanisms
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Sacramento, CA, Apr. 9–11, pp.
1530
1535
.
9.
Hong
,
D. W.
,
2006
, “
Biologically Inspired Locomotion Strategies: Novel Ground Mobile Robots at RoMeLa
,”
3rd International Conference on Ubiquitous Robots and Ambient Intelligence (URAI 2006)
, Seoul, Korea, Oct. 15–17.
10.
Ren
,
P.
, and
Hong
,
D.
,
2011
, “
Mobility Analysis of a Spoked Walking Machine With Variable Topologies
,”
ASME J. Mech. Rob.
,
3
(
4
), p.
041005
.
11.
Curtis
,
S. A.
,
Brandt
,
M.
,
Bowers
,
G.
,
Brown
,
G.
,
Cheung
,
C.
,
Desch
,
M.
,
Desch
,
N.
,
Dorband
,
J.
,
Lee
,
K.
,
Lunsford
,
A.
,
Shur
,
N.
,
Wesenberg
,
R.
,
Rilee
,
M. L.
,
Clark
,
P.
, and
Watson
,
R.
,
2006
, “
Mobile Science Platforms for Impassable Terrain
,”
IEEE International Conference on Aerospace
, Big Sky, MT, Mar. 4–11.
12.
Liu
,
C.-H.
,
Yao
,
Y.-A.
,
Li
,
R.-M.
,
Tian
,
Y.-B.
,
Zhang
,
N.
,
Ji
,
Y.-Y.
, and
Kong
,
F.-Z.
,
2012
, “
Rolling 4R Linkages
,”
Mech. Mach. Theory
,
48
, pp.
1
14
.
13.
Liu
,
C.
, and
Yao
,
Y.-A.
,
2009
, “
Biped RCCR Mechanism
,”
ASME J. Mech. Des.
,
131
(
3
), p.
031010
.
14.
Liu
,
C.
,
Yang
,
H.-H.
, and
Yao
,
Y.-A.
,
2012
, “
A Family of Biped Mechanisms With Two Revolute and Two Cylindric Joints
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
045002
.
15.
Tian
,
Y.
,
Wei
,
X.
,
Joneja
,
A.
, and
Yao
,
Y.-A.
,
2014
, “
Sliding–Crawling Parallelogram Mechanism
,”
Mech. Mach. Theory
,
78
, pp.
201
228
.
16.
Tian
,
Y.
,
Guo
,
Y.
,
Liu
,
C.
, and
Yao
,
Y.
,
2011
, “
Single-DOF Mobile Linkage With Possibility Orientation Movements
,”
Chin. J. Mech. Eng.
,
47
(
3
), pp.
14
20
(in Chinese).
17.
Schatz
,
P.
,
1975
,
Research of Rhythm and Technology
,
Verlag Freies Geistesleben
,
Stuttgart, Germany
, pp.
12
19
.
18.
Baker
,
J. E.
,
Duclong
,
T.
, and
Khoo
,
P. S. H.
,
1982
, “
On Attempting to Reduce Undesirable Inertial Characteristics of the Schatz Mechanism
,”
ASME J. Mech. Des.
,
104
(
1
), pp.
192
205
.
19.
Chen
,
Y.
, and
Phil
,
D.
,
2003
, “
Design of Structural Mechanisms
,” Doctoral dissertation, University of Oxford, Oxford, UK.
20.
Liu
,
J.
,
Huang
,
X. O.
,
Yu
,
Y.
, and
Huang
,
Z.
,
2012
, “
Structure Modeling of Schatz Linkage
,”
2nd International Conference on Information Engineering and Applications
(
IEA
), Chongqing, China, Oct. 26–28, pp.
601
609
.
21.
Lee
,
C.-C.
, and
Dai
,
J.
,
2003
, “
Configuration Analysis of the Schatz Linkage
,”
Proc. Inst. Mech. Eng., Part C
,
217
(
7
), pp.
779
786
.
22.
Cui
,
L.
,
Dai
,
J. S.
, and
Lee
,
C.-C.
,
2010
, “
Motion and Constraint Ruled Surfaces of the Schatz Linkage
,”
ASME
Paper No. DETC2010-28883.
23.
Lee
,
C.-C.
,
2000
, “
Analysis and Synthesis of Schatz Six-Revolute Mechanisms
,”
JSME Int. J. Ser. C
,
43
(
1
), pp.
80
91
.
24.
Borovac
,
B.
,
2004
, “
Zero-Moment Point—Thirty Five Years of Its Life
,”
Int. J. Humanoid Rob.
,
1
(
1
), pp.
157
173
.
25.
Qiang
,
H.
,
Kajita
,
S.
,
Koyachi
,
N.
,
Kaneko
,
K.
,
Yokoi
,
K.
,
Arai
,
H.
,
Komoriya
,
K.
, and
Tanie
,
K.
,
1999
, “
A High Stability, Smooth Walking Pattern for a Biped Robot
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Detroit, May 10–15, pp.
65
71
.
26.
Font-Llagunes
,
J. M.
, and
Kövecses
,
J.
,
2009
, “
Dynamics and Energetics of a Class of Bipedal Walking Systems
,”
Mech. Mach. Theory
,
44
(
11
), pp.
1999
2019
.
27.
Jonghoon
,
P.
, and
Youngil
,
Y.
,
2007
, “
General ZMP Preview Control for Bipedal Walking
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Rome, Apr. 10–14, pp.
10
14
.
28.
Li
,
Q. H.
,
Takanishi
,
A.
, and
Kato
,
I.
,
1992
, “
Learning Control of Compensative Trunk Motion for Biped Walking Robot Based on ZMP Stability Criterion
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Raleigh, NC, July 7–10, pp.
597
603
.
You do not currently have access to this content.