This paper presents a novel mechanism concept of laparoscope holders used for minimally invasive surgery (MIS). The mechanism is made of a parallelogram linkage and a parallel mechanism, which, respectively, serve as a robotic positioning arm and an orientating wrist of the holder. Due to its special geometry, the mechanism possesses several interesting kinematic properties. First, the laparoscope, which is held by the end-effector, can illustrate a remote center-of-motion (RCM) kinematics at the surgical incision point. Second, the position of the RCM point is solely defined by the parallelogram, whereas the orientation and insertion length of the laparoscope are governed by the parallel mechanism. Such an arrangement suggests a decoupled positioning and orientating manipulation for the holder, which is clinically helpful in laparoscopic MIS. Third, the overall mechanism including the parallelogram linkage and the parallel mechanism can be statically balanced at any configuration within the workspaces by using common linear springs. In other words, no electrical actuation or mechanical locks are required for making the laparoscope rest at any position and orientation. The design procedure for static balancing is detailed in the paper, and the theoretical formulation of the statically balanced mechanism is verified by a numerical example and computer simulation. The computer-aided design (CAD) model of the holder is constructed for evaluating its workspace and a physical prototype using commercial springs is built up and tested. It shows that the prototype that uses nonideal (commercial) springs can be statically balanced within the overall workspace, since the shortage/overshoot of the potential energy in the positioning mechanism and orientating mechanism, which are theoretically 6.8% and 5.1% of their total potential energies in maximum, are fully compensated by the friction effect.

References

1.
Intuitive Surgical, Inc., Sunnyvale, CA, http://www.intuitivesurgical.com
2.
Finlay
,
P. A.
, and
Ornstein
,
M. H.
,
1995
, “
Controlling the Movement of a Surgical Laparoscope
,”
IEEE Eng. Med. Biol. Mag.
,
14
(
3
), pp.
289
291
.
3.
Dowler
,
N. J.
, and
Holland
,
S. R. J.
,
1996
, “
The Evolutionary Design of an Endoscopic Telemanipulator
,”
IEEE Rob. Autom. Mag.
,
3
(
4
), pp.
38
45
.
4.
Yasunaga
,
T.
,
Hashizume
,
M.
,
Kobayashi
,
E.
,
Tanoue
,
K.
,
Akahoshi
,
T.
,
Konishi
,
K.
,
Yamaguchi
,
S.
,
Kinjo
,
N.
,
Tomikawa
,
M.
,
Muragaki
,
Y.
,
Shimada
,
M.
,
Maehara
,
Y.
,
Dohi
,
Y.
,
Sakuma
,
I.
, and
Miyamoto
,
S.
,
2003
, “
Remote-Controlled Laparoscope Manipulator System, Naviot™, for Endoscopic Surgery
,”
17th International Congress on Computer Assisted Radiology and Surgery
(
CARS
), London, June 25-28, Vol.
1256
, pp.
678
683
.
5.
Polet
,
R.
, and
Donnez
,
J.
,
2008
, “
Using a Laparoscope Manipulator (LAPMAN) in Laparoscopic Gynecological Surgery
,”
Surg. Technol. Int.
,
17
, pp.
187
191
.
6.
Hourlay
,
P.
,
2006
, “
How to Maintain the Quality of Laparoscopic Surgery in the Era of Lack of Hands?
,”
Acta Chir. Belg.
,
106
(
1
), pp.
22
26
.
7.
Buess
,
G. F.
,
Arezzo
,
A.
,
Schurr
,
M. O.
,
Ulmer
,
F.
,
Fisher
,
H.
,
Gumb
,
L.
,
Testa
,
T.
, and
Nobman
,
C.
,
2000
, “
A New Remote-Controlled Endoscope Positioning System for Endoscopic Solo Surgery: The FIPS Endoarm
,”
Surg. Endoscopy
,
14
(
4
), pp.
395
399
.
8.
EndoControl, Inc., Dover, DE, http://www.endocontrol-medical.com
9.
Berkelman
,
P.
,
Boidard
,
E.
,
Cinquin
,
P.
, and
Troccaz
,
J.
,
2003
, “
LER: The Light Endoscope Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2003
), Las Vegas, NV, Oct. 27–31, pp.
2835
2840
.
10.
Zemiti
,
N.
,
Morel
,
G.
,
Ortmaier
,
T.
, and
Bonnet
,
N.
,
2007
, “
Mechatronic Design of a New Robot for Force Control in Minimally Invasive Surgery
,”
IEEE/ASME Trans. Mechatron.
,
12
(
2
), pp.
143
153
.
11.
Marina Medical, Sunrise, FL, http://marinamedical.com
12.
GEOMED Medizin-Technik, Tuttlingen, Germany, http://www.geomed.de
13.
Aesculap, Inc., Center Valley, PA, http://www.aesculapusa.com
14.
MIKROLAND Endobloc Company, Rue du Pâtis, France, http://www.mikroland-endobloc.fr
15.
Schurr
,
M. O.
,
Arezzo
,
A.
,
Neisius
,
B.
,
Rininsland
,
H.
,
Hilzinger
,
H.-U.
,
Dorn
,
J.
,
Roth
,
K.
, and
Buess
,
G. F.
,
1999
, “
Trocar and Instrument Positioning System TISKA: An Assist Device for Endoscopic Solo Surgery
,”
Surg. Endoscopy
,
13
(
5
), pp.
528
531
.
16.
Wang
,
J.
, and
Gosselin
,
C. M.
,
2000
, “
Static Balancing of Spatial Four-Degree-of-Freedom Parallel Mechanisms
,”
Mech. Mach. Theory
,
35
(
4
), pp.
563
592
.
17.
Wang
,
J. G.
, and
Gosselin
,
C. M.
,
1999
, “
Static Balancing of Spatial Three-Degree-of-Freedom Parallel Mechanisms
,”
Mech. Mach. Theory
,
34
(
3
), pp.
437
452
.
18.
Laliberté
,
T.
,
Gosselin
,
C. M.
, and
Jean
,
M.
,
1999
, “
Static Balancing of 3-DOF Planar Parallel Mechanisms
,”
IEEE/ASME Trans. Mechatron.
,
4
(
4
), pp.
363
377
.
19.
Russo
,
A.
,
Sinatra
,
R.
, and
Xi
,
F.
,
2005
, “
Static Balancing of Parallel Robots
,”
Mech. Mach. Theory
,
40
(
2
), pp.
191
202
.
20.
Agrawal
,
S. K.
, and
Fattah
,
A.
,
2004
, “
Reactionless Space and Ground Robots: Novel Designs and Concept Studies
,”
Mech. Mach. Theory
,
39
(
1
), pp.
25
40
.
21.
Nathan
,
R. H.
,
1985
, “
A Constant Force Generation Mechanism
,”
ASME J. Mech., Transm. Autom. Des.
,
107
(
4
), pp.
508
512
.
22.
Rahman
,
T.
,
Ramanathan
,
R.
,
Seliktar
,
R.
, and
Harwin
,
W.
,
1995
, “
Simple Technique to Passively Gravity-Balance Articulated Mechanisms
,”
ASME J. Mech. Des.
,
117
(
4
), pp.
655
658
.
23.
Ebert-Uphoff
,
I.
,
Gosselin
,
C. M.
, and
Laliberté
,
T.
,
2000
, “
Static Balancing of Spatial Parallel Platform Mechanisms-Revisited
,”
ASME J. Mech. Des.
,
122
(
1
), pp.
43
51
.
24.
Deepak
,
S. R.
, and
Ananthasuresh
,
G. K.
,
2012
, “
Perfect Static Balance of Linkages by Addition of Springs But Not Auxiliary Bodies
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021014
.
25.
Herder
,
J. L.
,
1998
, “
Design of Spring Force Compensation Systems
,”
Mech. Mach. Theory
,
33
(
1–2
), pp.
151
161
.
26.
van Dorsser
,
W. D.
,
Barents
,
R.
,
Wisse
,
B. M.
, and
Herder
,
J. L.
,
2007
, “
Gravity-Balanced Arm Support With Energy-Free Adjustment
,”
ASME J. Med. Devices
,
1
(
2
), pp.
151
158
.
27.
van Dorsser
,
W. D.
,
Barents
,
R.
,
Wisse
,
B. M.
,
Schenk
,
M.
, and
Herder
,
J. L.
,
2008
, “
Energy-Free Adjustment of Gravity Equilibrators by Adjusting the Spring Stiffness
,”
Proc. Inst. Mech. Eng., Part C
,
222
(
9
), pp.
1839
1846
.
28.
Barents
,
R.
,
Schenk
,
M.
,
van Dorsser
,
W. D.
,
Wisse
,
B. M.
, and
Herder
,
J. L.
,
2011
, “
Spring-to-Spring Balancing as Energy-Free Adjustment Method in Gravity Equilibrators
,”
ASME J. Mech. Des.
,
133
(
6
), p.
061010
.
29.
Lin
,
P.-Y.
,
Shieh
,
W.-B.
, and
Chen
,
D.-Z.
,
2010
, “
Design of a Gravity-Balanced General Spatial Serial-Type Manipulator
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031003
.
30.
Lin
,
P.-Y.
,
Shieh
,
W.-B.
, and
Chen
,
D.-Z.
,
2010
, “
A Stiffness Matrix Approach for the Design of Statically Balanced Planar Articulated Manipulators
,”
Mech. Mach. Theory
,
45
(
12
), pp.
1877
1891
.
31.
Lin
,
P.-Y.
,
2012
, “
Design of Statically Balanced Spatial Mechanisms With Spring Suspensions
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021015
.
32.
Lin
,
P.-Y.
,
Shieh
,
W.-B.
, and
Chen
,
D.-Z.
,
2012
, “
Design of Statically Balanced Planar Articulated Manipulators With Spring Suspension
,”
IEEE Trans. Rob.
,
28
(
1
), pp.
12
21
.
33.
Lee
,
Y.-Y.
, and
Chen
,
D.-Z.
,
2014
, “
Determination of Spring Installation Configuration on Statically Balanced Planar Articulated Manipulators
,”
ASME J. Mech. Rob.
(in press).
34.
Agrawal
,
A.
, and
Agrawal
,
S. K.
,
2005
, “
Design of Gravity Balancing Leg Orthosis Using Non-Zero Free Length Springs
,”
Mech. Mach. Theory
,
40
(
6
), pp.
693
709
.
35.
Agrawal
,
S. K.
, and
Fattah
,
A.
,
2004
, “
Gravity-Balancing of Spatial Robotic Manipulators
,”
Mech. Mach. Theory
,
39
(
12
), pp.
1331
1344
.
36.
Banala
,
S. K.
,
Agrawal
,
S. K.
,
Fattah
,
A.
,
Krishnamoorthy
,
V.
,
Hsu
,
W. L.
,
Scholz
,
J.
, and
Rudolph
,
K.
,
2006
, “
Gravity-Balancing Leg Orthosis and Its Performance Evaluation
,”
IEEE Trans. Rob.
,
22
(
6
), pp.
1228
1239
.
37.
Eckenstein
,
N.
, and
Yim
,
M.
,
2013
, “
Modular Advantage and Kinematic Decoupling in Gravity Compensated Robotic Systems
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041013
.
38.
Carricato
,
M.
, and
Gosselin
,
C.
,
2009
, “
A Statically Balanced Gough/Stewart-Type Platform: Conception, Design, and Simulation
,”
ASME J. Mech. Rob.
,
1
(
3
), p.
031005
.
39.
Taylor
,
R. H.
, and
Stoianovici
,
D.
,
2003
, “
Medical Robotics in Computer-Integrated Surgery
,”
IEEE Trans. Rob. Autom.
,
19
(
5
), pp.
765
781
.
40.
Kuo
,
C.-H.
,
Dai
,
J.-S.
, and
Dasgupta
,
P.
,
2012
, “
Kinematic Design Considerations for Minimally Invasive Surgical Robots: An Overview
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
8
(
2
), pp.
127
145
.
41.
Rosen
,
J.
,
Brown
,
J. D.
,
Chang
,
L.
,
Barreca
,
M.
,
Sinanan
,
M.
, and
Hannaford
,
B.
,
2002
, “
The BlueDRAGON—A System for Measuring the Kinematics and the Dynamics of Minimally Invasive Surgical Tools In-Vivo
,”
IEEE International Conference on Robotics and Automation
(
ICRA '02
), Washington, DC, May 11–15, Vol.
2
, pp.
1876
1881
.
42.
Baumann
,
R.
,
Maeder
,
W.
,
Glauser
,
D.
, and
Clavel
,
R.
,
1997
, “
The PantoScope: A Spherical Remote-Center-of-Motion Parallel Manipulator for Force Reflection
,”
IEEE International Conference on Robotics and Automation
, Albuquerque, NM, Apr. 20–25, pp.
718
723
.
43.
Vischer
,
P.
, and
Clavel
,
R.
,
2000
, “
Argos: A Novel 3-DoF Parallel Wrist Mechanism
,”
Int. J. Rob. Res.
,
19
(
1
), pp.
5
11
.
44.
Li
,
J.
,
Zhang
,
G.
,
Müller
,
A.
, and
Wang
,
S.
,
2013
, “
A Family of Remote Center of Motion Mechanisms Based on Intersecting Motion Planes
,”
ASME J. Mech. Des.
,
135
(
9
), p.
091009
.
45.
Hadavand
,
M.
,
Mirbagheri
,
A.
,
Behzadipour
,
S.
, and
Farahmand
,
F.
,
2014
, “
A Novel Remote Center of Motion Mechanism for the Force-Reflective Master Robot of Haptic Tele-Surgery Systems
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
10
(
2
), pp.
129
139
.
46.
Kuo
,
C.-H.
, and
Dai
,
J. S.
,
2012
, “
Kinematics of a Fully-Decoupled Remote Center-of-Motion Parallel Manipulator for Minimally Invasive Surgery
,”
ASME J. Med. Devices
,
6
(
2
), p.
021008
.
47.
Li
,
J.
,
Xing
,
Y.
,
Liang
,
K.
, and
Wang
,
S.
,
2015
, “
Kinematic Design of a Novel Spatial Remote Center-of-Motion Mechanism for Minimally Invasive Surgical Robot
,”
ASME J. Med. Devices
,
9
(
1
), p.
011003
.
48.
Lum
,
M. J. H.
,
Rosen
,
J.
,
Sinanan
,
M. N.
, and
Hannaford
,
B.
,
2004
, “
Kinematic Optimization of a Spherical Mechanism for a Minimally Invasive Surgical Robot
,”
IEEE International Conference on Robotics and Automation
(
ICRA '04
), New Orleans, LA, Apr. 26–May 1, Vol.
1
, pp.
829
834
.
49.
Kuo
,
C.-H.
, and
Lai
,
S.-J.
,
2014
, “
Design of a Novel Statically Balanced Mechanism for Laparoscope Holders With Decoupled Positioning and Orientating Manipulation
,”
ASME
Paper No. DETC2014-34711.
50.
Gosselin
,
C. M.
,
1999
, “
Static Balancing of Spherical 3-DoF Parallel Mechanisms and Manipulators
,”
Int. J. Rob. Res.
,
18
(
8
), pp.
819
829
.
51.
Gosselin
,
C. M.
, and
Wang
,
J.
,
1998
, “
On the Design of Gravity-Compensated Six-Degree-of-Freedom Parallel Mechanisms
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Leuven, Belgium, May 16–20, Vol.
3
, pp.
2287
2294
.
52.
Tsai
,
L.-W.
,
1999
,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
,
Wiley
,
New York
.
53.
Bagci
,
C
.,
1985
, “
Complete Balancing of Space Mechanisms—Shaking Force Balancing
,”
ASME J. Mech., Transm. Autom. Des.
,
105
(
4
), pp.
609
616
.
54.
You do not currently have access to this content.