This paper presents a design methodology for Stephenson II six-bar function generators that coordinate 11 input and output angles. A complex number formulation of the loop equations yields 70 quadratic equations in 70 unknowns, which is reduced to a system of ten eighth degree polynomial equations of total degree 810=1.07×109. These equations have a monomial structure which yields a multihomogeneous degree of 264,241,152. A sequence of polynomial homotopies was used to solve these equations and obtain 1,521,037 nonsingular solutions. Contained in these solutions are linkage design candidates which are evaluated to identify cognates, and then analyzed to determine their input–output angles in each assembly. The result is a set of feasible linkage designs that reach the required accuracy points in a single assembly. As an example, three Stephenson II function generators are designed, which provide the input–output functions for the hip, knee, and ankle of a humanoid walking gait.

References

References
1.
Svoboda
,
A.
,
1948
,
Computing Mechanisms and Linkages
,
McGraw-Hill
,
New York
.
2.
Shimojima
,
H.
, and
Lian
,
J. G.
,
1987
, “
Dimensional Synthesis of Dwell Function Generators (On 6-Link Stephenson Mechanisms)
,”
JSME Int. J.
,
30
(
260
), pp.
324
329
.
3.
Yao
,
Y.
, and
Yan
,
H.
,
2003
, “
A New Method for Torque Balancing of Planar Linkages Using Non-Circular Gears
,”
Proc. Inst. Mech. Eng., Part C
,
217
(
5
), pp.
495
503
.
4.
Freudenstein
,
F.
,
1954
, “
An Analytical Approach to the Design of Four-Link Mechanisms
,”
Trans. ASME
,
76
(
3
), pp.
483
492
.
5.
Dhingra
,
A. K.
,
Cheng
,
J. C.
, and
Kohli
,
D.
,
1994
, “
Synthesis of Six-Link, Slider-Crank and Four-Link Mechanisms for Function, Path and Motion Generation Using Homotopy With m-Homogenization
,”
ASME J. Mech. Des.
,
116
(
4
), pp.
1122
1131
.
6.
Plecnik
,
M.
, and
McCarthy
,
J. M.
,
2015
, “
Controlling the Movement of a TRR Spatial Chain With Coupled Six-Bar Function Generators for Biomimetic Motion
,”
ASME
Paper No. DETC2015-47876.
7.
Bates
,
D. J.
,
Hauenstein
,
J. D.
,
Sommese
,
A. J.
, and
Wampler
,
C. W.
,
2014
, “
Bertini™: Software for Numerical Algebraic Geometry
,” available at: www.bertini.nd.edu
8.
Bates
,
D. J.
,
Hauenstein
,
J. D.
,
Sommese
,
A. J.
, and
Wampler
,
C. W.
,
2013
,
Numerically Solving Polynomial Systems With Bertini
,
SIAM Press
,
Philadelphia
, p.
352
.
9.
Hartenberg
,
R. S.
, and
Denavit
,
J.
,
1964
,
Kinematic Synthesis of Linkages
,
McGraw-Hill
,
New York
.
10.
Erdman
,
A. G.
,
Sandor
,
G. N.
, and
Kota
,
S.
,
2001
,
Mechanism Design: Analysis and Synthesis
,
Prentice Hall
,
Upper Saddle River, NJ
.
11.
McCarthy
,
J. M.
, and
Soh
,
G. S.
,
2010
,
Geometric Design of Linkages
(Interdisciplinary Applied Mathematics, Vol.
11
),
2nd ed.
,
Springer-Verlag
,
New York
.
12.
Svoboda
,
A.
,
1944
, “
Mechanism for Use in Computing Apparatus
,” U.S. Patent No. 2,340,350.
13.
McLarnan
,
C. W.
,
1963
, “
Synthesis of Six-Link Plane Mechanisms by Numerical Analysis
,”
J. Eng. Ind.
,
85
(
1
), pp.
5
10
.
14.
Mohan Rao
,
A. V.
,
Erdman
,
A. G.
,
Sandor
,
G. N.
,
Raghunathan
,
V.
,
Nigbor
,
D. E.
,
Brown
,
L. E.
,
Mahardy
,
E. F.
, and
Enderle
,
E. D.
,
1971
, “
Synthesis of Multi-Loop, Dual-Purpose Planar Mechanisms Utilizing Burmester Theory
,”
2nd OSU Applied Mechanism Conference
, Stillwater, OK, Oct. 7–8, Paper No. 7.
15.
Liu
,
A.
,
Shi
,
B.
, and
Yang
,
T.
,
1995
, “
On the Kinematic Synthesis of Planar Linkages With Multi-Loops
,” Ninth World Congress on the Theory of Machines and Mechanisms, Milan, Italy, Aug. 29–Sept. 2, pp.
95
97
.
16.
Simionescu
,
P. A.
, and
Alexandru
,
P.
,
1995
, “
Synthesis of Function Generators Using the Method of Increasing the Degree of Freedom of the Mechanism
,” Ninth World Congress on the Theory of Machines and Mechanisms, Milan, Italy, Aug. 29–Sept. 2, pp.
139
143
.
17.
Akçali
,
I. D.
,
1995
, “
Modular Approach to Function Generation
,” Ninth World Congress on the Theory of Machines and Mechanisms, Milan, Italy, Aug. 29–Sept. 2, pp.
1440
1444
.
18.
Kinzel
,
E. C.
,
Schmiedeler
,
J. P.
, and
Pennock
,
G. R.
,
2007
, “
Function Generation With Finitely Separated Precision Points Using Geometric Constraint Programming
,”
ASME J. Mech. Des.
,
129
(
11
), pp.
1185
1190
.
19.
Hwang
,
W. M.
, and
Chen
,
Y. J.
,
2010
, “
Defect-Free Synthesis of Stephenson-II Function Generators
,”
ASME J. Mech. Rob.
,
2
(
4
), p.
041012
.
20.
Sancibrian
,
R.
,
2011
, “
Improved GRG Method for the Optimal Synthesis of Linkages in Function Generation Problems
,”
Mech. Mach. Theory
,
46
(
10
), pp.
1350
1375
.
21.
Plecnik
,
M.
, and
McCarthy
,
J. M.
,
2014
, “
Numerical Synthesis of Six-Bar Linkages for Mechanical Computation
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031012
.
22.
Dijksman
,
E. A.
,
1976
,
Motion Geometry of Mechanisms
,
Cambridge University Press
,
Cambridge, UK
.
23.
Wampler
,
C. W.
,
1996
, “
Isotropic Coordinates, Circularity, and Bézout Numbers: Planar Kinematics From a New Perspective
,”
ASME
Paper No. 96-DETC/MECH-1210.
24.
Simionescu
,
P. A.
, and
Smith
,
M. R.
,
2001
, “
Four-and Six-Bar Function Cognates and Overconstrained Mechanisms
,”
Mech. Mach. Theory
,
36
(
8
), pp.
913
924
.
25.
Roberts
,
S.
,
1875
, “
Three-Bar Motion in Plane Space
,”
Proc. London Math. Soc.
,
s1–7
(
1
), pp.
14
23
.
26.
Chase
,
T. R.
, and
Mirth
,
J. A.
,
1993
, “
Circuits and Branches of Single-Degree-of-Freedom Planar Linkages
,”
ASME J. Mech. Des.
,
115
(
2
), pp.
223
230
.
27.
Balli
,
S. S.
, and
Chand
,
S.
,
2002
, “
Defects in Link Mechanisms and Solution Rectification
,”
Mech. Mach. Theory
,
37
(
9
), pp.
851
876
.
You do not currently have access to this content.