Hyper-dual numbers (HDNs) are applied in this paper to multibody kinematics. First, the hyper-dual angle that encompasses a body's position, orientation, as well as its velocity, is defined as an element of the hyper-dual transformation matrix. Then, the “automatic differentiation” feature of the dual numbers is used to obtain the second derivative of a body pose. The body's velocity and acceleration are obtained from the elements of the hyper-dual transformation matrix by algebraic manipulations only, with no need for further time derivatives of the body pose. A robot manipulator is presented as an exemplary application of HDNs to multibody kinematics.

References

References
1.
Clifford
,
W. K.
,
1873
, “
Preliminary Sketch of Bi-Quaternions
,”
Proc. London Math. Soc.
,
4
, pp.
381
395
.
2.
Kotelnikov
,
A. P.
,
1895
,
Screw Calculus and Some Applications to Geometry and Mechanics
,
Annals of the Imperial University of Kazan
,
Kazan, Russia
.
3.
Keler
,
M. L.
,
1973
, “
Kinematics and Statics Including Friction in Single-Loop Mechanisms by Screw Calculus and Dual Vectors
,”
ASME J. Eng. Ind.
,
95
(
2
), pp.
471
480
.
4.
Yang
,
A. T.
, and
Freudenstein
,
F.
,
1964
, “
Application of Dual Number Quaterian Algebra to Analysis of Spatial Mechanisms
,”
ASME J. Appl. Mech.
,
31
(2), pp.
300
308
.
5.
Dimentberg
,
F. M.
,
1965
,
The Screw Calculus and Its Application in Mechanics
,
Nauka, Moscow
(Clearinghouse for Federal and Scientific Technical Information).
6.
Pennestrì
,
E.
, and
Stefanelli
,
R.
,
2007
, “
Linear Algebra and Numerical Algorithms Using Dual Numbers
,”
Multibody Syst. Dyn.
,
18
(
3
), pp.
323
344
.
7.
Veldkamp
,
G. R.
,
1976
, “
On the Use of Dual Numbers, Vectors and Matrices in Instantaneous, Spatial Kinematics
,”
Mech. Mach. Theory
,
11
(
2
), pp.
141
156
.
8.
Spall
,
R. E.
, and
Yu
,
W.
,
2013
, “
Imbedded Dual-Number Automatic Differentiation for Computational Fluid Dynamics Sensitivity Analysis
,”
ASME J. Fluids Eng.
,
135
(
1
), p.
014501
.
9.
Yu
,
W.
, and
Blair
,
M.
,
2013
, “
DNAD, a Simple Tool for Automatic Differentiation of Fortran Codes Using Dual Numbers
,”
Comput. Phys. Commun.
,
184
(
5
), pp.
1446
1452
.
10.
Gu
,
Y. L.
, and
Loh
,
N. K.
,
1985
, “
Dynamic Model for Industrial Robots Based on a Compact Lagrangian Formulation
,”
24th IEEE Conference Decision and Control
, Fort Laudedale, FL, Dec. 11–13, pp.
1497
1501
.
11.
Gu
,
Y. L.
, and
Luh
,
J. Y. S.
,
1987
, “
Dual Number Transformation and Its Applications to Robotics
,”
IEEE Trans. Rob. Autom.
,
3
(
6
), pp.
615
623
.
12.
Fike
,
J. A.
,
Jongsma
,
S.
,
Alonso
,
J. J.
, and
van der Weida
,
E.
,
2011
, “
Optimization With Gradient and Hessian Information Calculated Using Hyper-Dual Numbers
,”
AIAA
Paper No. 2011-3807.
13.
Fike
,
J. A.
,
2009
, “
Numerically Exact Derivative Calculations Using Hyper-Dual Numbers
,”
3rd Annual Student Joint Workshop in Simulation-Based Engineering and Design
,
Stanford University
,
Stanford, CA
, June 18.
14.
Fike
,
J. A.
, and
Alonso
,
J. J.
,
2011
, “
The Development of Hyper-Dual Numbers for Exact Second-Derivative Calculations
,”
AIAA
Paper No. 2011-886.
15.
Fike
,
J. A.
, and
Alonso
,
J. J.
,
2011
, “
Automatic Differentiation Through the Use of Hyper-Dual Numbers for Second Derivatives
,”
Recent Advances in Algorithmic Differentiation
(Lecture Notes in Computational Science and Engineering, Vol.
87
),
Springer-Verlag
,
Berlin
, pp.
163
173
.
16.
Penunuri
,
F.
,
Mendoza
,
O.
,
Peon-Escalante
,
R.
,
Villanueva
,
C.
, and
Cruz-Villar
,
C. A.
,
2013
, “
A Dual Number Approach for Numerical Calculation of Velocity and Acceleration in the Spherical 4R Mechanism
,” e-print
arXiv:1301.1409
.
17.
Study
,
E.
,
1903
,
Die Geometrie der Dynamen
,
Verlag Teubner, Leipzig
,
Germany
, p.
437
.
18.
Pradeep
,
A. K.
,
Yoder
,
P. J.
, and
Mukundan
,
R.
,
1989
, “
On the Use of Dual-Matrix Exponentials in Robotic Kinematics
,”
Int. J. Rob. Res.
,
8
(
5
), pp.
57
66
.
19.
Jen
,
F. H.
, and
Shoham
,
M.
,
1993
, “
On Rotations and Translations With Application to Robot Manipulators
,”
Adv. Rob.
,
8
(
2
), pp.
203
229
.
20.
Whitney
,
D. E.
,
1972
, “
The Mathematics of Coordinated Control of Prosthetic Arms and Manipulators
,”
ASME J. Dyn. Syst. Meas. Control
,
94
(
4
), pp.
303
309
.
21.
Brodsky
,
V.
, and
Shoham
,
M.
,
1998
, “
Derivation of Dual Forces in Robot Manipulators
,”
Mech. Mach. Theory
,
33
(
8
), pp.
1241
1248
.
You do not currently have access to this content.