This paper uses rigid-body mechanism topologies to synthesize fully distributed compliant mechanisms that approximate a shape change defined by a set of morphing curves in different positions. For a shape-change problem, a rigid-body mechanism solution is generated first to provide the base topology. This base topology defines a preselected design space for the structural optimization in one of two ways so as to obtain a compliant mechanism solution that is typically superior to the local minimum solutions obtained from searching more expansive design spaces. In the first strategy, the dimensional synthesis directly determines the optimal size and shape of the distributed compliant mechanism having exactly the base topology. In the second strategy, an initial mesh network established from the base topology is used to generate different topologies (in addition to the base), and an improved design domain parameterization scheme ensures that only topologies with well-connected structures are evaluated. The deformation of each generated compliant mechanism is evaluated using geometrically nonlinear finite element analysis (FEA). A two-objective genetic algorithm (GA) is employed to find a group of viable designs that trade off minimizing shape matching error with minimizing maximum stress. The procedure's utility is demonstrated with three practical examples—the first two approximating open-curve profiles of an adaptive antenna and the third approximating closed-curve profiles of a morphing wing.

References

References
1.
Washington
,
G.
, and
Yoon
,
H. S.
,
2010
, “
An Optimal Method of Shape Control for Deformable Structures With an Application to a Mechanically Reconfigurable Reflector Antenna
,”
Smart Mater. Struct.
,
19
(
10
), p.
105004
.
2.
Lu
,
K. J.
, and
Kota
,
S.
,
2003
, “
Design of Compliant Mechanisms for Morphing Structural Shapes
,”
J. Intell. Mater. Syst. Struct.
,
14
(
6
), pp.
379
391
.
3.
Daynes
,
S.
, and
Weaver
,
P. M.
,
2011
, “
A Shape Adaptive Airfoil for a Wind Turbine Blade
,”
Proc. SPIE
,
7979
, p.
79790H
.
4.
Calkins
,
F. T.
, and
Mabe
,
J. H.
,
2010
, “
Shape Memory Alloy Based Morphing Aerostrutures
,”
ASME J. Mech. Des.
,
132
(
11
), p.
111012
.
5.
Rodrigues
,
G.
,
Bastaits
,
R.
,
Roose
,
S.
,
Stockman
,
Y.
,
Gebhardt
,
S.
,
Schoenecker
,
A.
,
Villon
,
P.
, and
Preumont
,
A.
,
2009
, “
Modular Bimorph Mirrors for Adaptive Optics
,”
Opt. Eng.
,
48
(
3
), p.
034001
.
6.
Kota
,
S.
,
Hetrick
,
J.
, and
Osborn
,
R.
,
2003
, “
Design and Application of Compliant Mechanisms for Morphing Aircraft Structures
,”
Proc. SPIE
,
5054
, pp.
24
33
.
7.
Zhao
,
K.
,
Schmiedeler
,
J. P.
, and
Murray
,
A. P.
,
2012
, “
Design of Planar, Shape-Changing Rigid-Body Mechanisms for Morphing Aircraft Wings
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041007
.
8.
Frank
,
G. J.
,
Joo
,
J. J.
,
Sanders
,
B.
,
Garner
,
D. M.
, and
Murray
,
A. P.
,
2008
, “
Mechanization of a High Aspect Ratio Wing for Aerodynamic Control
,”
J. Intell. Mater. Syst. Struct.
,
19
(
9
), pp.
1101
1112
.
9.
Trease
,
B.
, and
Kota
,
S.
,
2009
, “
Design of Adaptive and Controllable Compliant Systems With Embedded Actuators and Sensors
,”
ASME J. Mech. Des.
,
131
(
11
), p.
111001
.
10.
Murray
,
A. P.
,
Schmiedeler
,
J. P.
, and
Korte
,
B. M.
,
2008
, “
Kinematic Synthesis of Planar, Shape-Changing Rigid-Body Mechanisms
,”
ASME J. Mech. Des.
,
130
(
3
), p.
032302
.
11.
Persinger
,
J. A.
,
Schmiedeler
,
J. P.
, and
Murray
,
A. P.
,
2009
, “
Synthesis of Planar Rigid-Body Mechanisms Approximating Shape Changes Defined by Closed Curves
,”
ASME J. Mech. Des.
,
131
(
7
), p.
071006
.
12.
Zhao
,
K.
,
Schmiedeler
,
J. P.
, and
Murray
,
A. P.
,
2011
, “
Kinematic Synthesis of Planar, Shape-Changing Rigid-Body Mechanisms With Prismatic Joints
,”
ASME
Paper No. DETC2011-48503.
13.
Ananthasuresh
,
G. K.
,
Kota
,
S.
, and
Kikuchi
,
K.
,
1994
, “
Strategies for Systematic Synthesis of Compliant MEMS
,”
ASME International Mechanical Engineering Congress and Exposition (IMECE)
,
Chicago, IL
, Nov. 6–11, pp.
677
686
.
14.
Lu
,
K. J.
, and
Kota
,
S.
,
2006
, “
Topology and Dimensional Synthesis of Compliant Mechanisms Using Discrete Optimization
,”
ASME J. Mech. Des.
,
128
(
5
), pp.
1080
1091
.
15.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
16.
Howell
,
L. L.
, and
Midha
,
A.
,
1994
, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
280
290
.
17.
Zhao
,
K.
,
Schmiedeler
,
J. P.
, and
Murray
,
A. P.
,
2012
, “
Kinematic Synthesis of Planar, Shape-Changing Compliant Mechanisms Using Pseudo-Rigid-Body Models
,”
ASME
Paper No. DETC2012-70359.
18.
Funke
,
L. W.
,
Schmiedeler
,
J. P.
, and
Zhao
,
K.
,
2015
, “
Design of Planar Multi-Degree-of-Freedom Morphing Mechanisms
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011007
.
19.
Lu
,
K. J.
,
2004
, “
Synthesis of Shape Morphing Compliant Mechanisms
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
20.
Pedersen
,
C. B. W.
,
Buhl
,
T.
, and
Segmund
,
O.
,
2001
, “
Topology Synthesis of Large-Displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
,
50
(
12
), pp.
2683
2705
.
21.
Tai
,
K.
, and
Chee
,
T. H.
,
2000
, “
Design of Structures and Compliant Mechanisms by Evolutionary Optimization of Morphological Representations of Topology
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
560
566
.
You do not currently have access to this content.