Rigidly foldable origami crease patterns can be translated into corresponding rigid mechanisms with at least one degree of freedom. However, origami crease patterns of interest for engineering applications are not always rigidly foldable, and designers trying to adapt a crease pattern may be confronted with the need to add more mobility to their design. This paper presents design guidelines for making alterations to a crease pattern to make it rigidly foldable. Adding creases, removing panels, and splitting creases are presented as potential alterations for increasing mobility, and approaches for determining the position and number of alterations are discussed. This paper also investigates means for reducing the number of changes necessary to achieve this condition. The approach is developed in general and illustrated through a demonstrative example.

References

References
1.
Demaine
,
E.
, and
O'Rourke
,
J.
,
2007
,
Geometric Folding Algorithms
,
Cambridge University Press
, New York.
2.
Tachi
,
T.
,
2009
, “
Generalization of Rigid-Foldable Quadrilateral-Mesh Origami
,”
J. Int. Assoc. Shell Spat. Struct.
,
50
(
162
), pp.
173
179
.
3.
Zhang
,
K.
, and
Dai
,
J. S.
,
2014
, “
A Kirigami-Inspired 8R Linkage and Its Evolved Overconstrained 6R Linkages With the Rotational Symmetry of Order Two
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021007
.
4.
Abdul-Sater
,
K.
,
Irlinger
,
F.
, and
Lueth
,
T. C.
,
2013
, “
Two-Configuration Synthesis of Origami-Guided Planar, Spherical and Spatial Revolute—Revolute Chains
,”
ASME J. Mech. Rob.
,
5
(
3
), p.
031005
.
5.
Mavroidis
,
C.
, and
Roth
,
B.
,
1995
, “
Analysis of Overconstrained Mechanisms
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
69
74
.
6.
Wu
,
W.
, and
You
,
Z.
,
2010
, “
Modelling Rigid Origami With Quaternions and Dual Quaternions
,”
Proc. R. Soc. A
,
466
(
2119
), pp.
2155
2174
.
7.
Diaz
,
A. R.
, and
Fuchi
,
K.
,
2013
, “
Origami Design by Topology Optimization
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111003
.
8.
Wu
,
W.
, and
You
,
Z.
,
2011
, “
A Solution for Folding Rigid Tall Shopping Bags
,”
Proc. R. Soc. A
,
467
(
2133
), pp.
2561
2574
.
9.
Tachi
,
T.
, and
Miura
,
K.
,
2012
, “
Rigid-Foldable Cylinders and Cells
,”
J. Int. Assoc. Shell Spat. Struct.
,
53
(
4
), pp.
217
226
.
10.
Tachi
,
T.
,
2009
, “
Simulation of Rigid Origami
,”
Origami 4
,
R. J.
Lang
, ed.,
A.K. Peters/CRC Press
,
Natick, MA
, pp.
175
187
.
11.
Angeles
,
J.
,
1988
,
Rational Kinematics
,
Springer
, New York.
12.
Wampler
,
C.
,
Larson
,
B.
, and
Erdman
,
A.
,
2008
, “
A New Mobility Formula for Spatial Mechanisms
,”
ASME
Paper No. DETC2007-35574.
13.
Shai
,
O.
,
2011
, “
The Correction to Grubler Criterion for Calculating the Degrees of Freedoms of Mechanisms
,”
ASME
Paper No. DETC2011-48146.
14.
Davies
,
T. H.
,
1981
, “
Kirchhoff's Circulation Law Applied to Multi-Loop Kinematic Chains
,”
Mech. Mach. Theory
,
16
(
3
), pp.
171
183
.
15.
Wohlhart
,
K.
,
2004
, “
Screw Spaces and Connectivities in Multiloop Linkages
,”
On Advances in Robot Kinematics
,
J.
Lenarcic
, and
C.
Galletti
, eds.,
Springer
,
Netherlands
, pp.
97
104
.
16.
Xia
,
S.
,
Ding
,
H.
, and
Kecskemethy
,
A.
,
2012
, “
A Loop-Based Approach for Rigid Subchain Identification in General Mechanisms
,”
Latest Advances in Robot Kinematics
,
J.
Lenarcic
, and
M.
Husty
, eds.,
Springer
,
Dordrecht
, pp.
19
26
.
17.
Dai
,
J. S.
, and
Jones
,
J. R.
,
2002
, “
Kinematics and Mobility Analysis of Carton Folds in Packing Manipulation Based on the Mechanism Equivalent
,”
Proc. Inst. Mech. Eng., Part C
,
216
(
10
), pp.
959
970
.
18.
Wei
,
G.
, and
Dai
,
J. S.
,
2014
, “
Origami-Inspired Integrated Planar-Spherical Overconstrained Mechanisms
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051003
.
19.
Winder
,
B. G.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2009
, “
Kinematic Representations of Pop-Up Paper Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021009
.
20.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
21.
Goodman
,
J. E.
, and
O'Rourke
,
J.
,
1997
,
Handbook of Discrete and Computational Geometry
,
2nd ed.
,
Chapman & Hall/CRC
,
New York
.
22.
McCarthy
,
J. M.
,
2000
,
Geometric Design of Linkages
,
Springer
,
New York
.
23.
Greenberg
,
H. C.
,
Gong
,
M. L.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2011
, “
Identifying Links Between Origami and Compliant Mechanisms
,”
J. Mech. Sci.
,
2
(
2
), pp.
217
225
.
24.
Wang
,
Y.
,
Zhang
,
J.
, and
Wang
,
Y.
,
2011
, “
Optimizational Study on Computing Method of Channel Earthwork Based on matlab
,”
Intelligent Computing and Information Science
(Communications in Computer and Information Science (Book 134), Vol. 1),
R.
Chen
, ed.,
Springer
,
Berlin
, pp.
69
76
.
25.
Koetsier
,
T.
, and
Ceccarelli
,
M.
, eds.,
2012
,
Spatial Overconstrained Linkages—The Lost Jade
,
Springer
,
Dordrecht
.
26.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2006
, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
220
229
.
27.
Mitani
,
J.
,
2011
, “
A Method for Designing Crease Patterns for Flat-Foldable Origami With Numerical Optimization
,”
J. Geom. Graphics
,
15
(
2
), pp.
195
201
.
You do not currently have access to this content.