This work examines a passive perching mechanism that enables a rotorcraft to grip branchlike perches and resist external wind disturbance using only the weight of the rotorcraft to maintain the grip. We provide an analysis of the mechanism’s kinematics, present the static force equations that describe how the weight of the rotorcraft is converted into grip force onto a cylindrical perch, and describe how grip forces relate to the ability to reject horizontal disturbance forces. The mechanism is optimized for a single perch size and then for a range of perch sizes. We conclude by constructing a prototype mechanism and demonstrate its use with a remote-controlled (RC) helicopter.

References

References
1.
Doyle
,
C. E.
,
Bird
,
J. J.
,
Isom
,
T. A.
,
Johnson
,
C. J.
,
Kallman
,
J. C.
,
Simpson
,
J. A.
,
King
,
R. J.
,
Abbott
,
J. J.
, and
Minor
,
M. A.
,
2011
, “
Avian-Inspired Passive Perching Mechanism for Robotic Rotorcraft
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2011
),
San Francisco, CA
, Sept. 25–30, pp.
4975
4980
.
2.
Doyle
,
C. E.
,
Bird
,
J. J.
,
Isom
,
T. A.
,
Kallman
,
J. C.
,
Bareiss
,
D. F.
,
Dunlop
,
D. J.
,
King
,
R. J.
,
Abbott
,
J. J.
, and
Minor
,
M. A.
,
2013
, “
An Avian-Inspired Passive Mechanism for Quadrotor Perching
,”
IEEE/ASME Trans. Mechatronics
,
18
(
2
), pp.
506
517
.
3.
Wikipedia
,
2013
, “
Sarrus Linkage
,” http://en.wikipedia.org/wiki/Sarrus_linkage
4.
Larson
,
A. J.
,
2011
, “
Development and Testing of an Active Perching System
,” Master’s thesis, Oklahoma State University, Stillwater, OK.
5.
Moore
,
J.
, and
Tedrake
,
R.
,
2011
, “
Magnetic Localization for Perching UAVs on Powerlines
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2011
),
San Francisco, CA
, Sept. 25–30, pp.
2700
2707
.
6.
Moore
,
J.
, and
Tedrake
,
R.
,
2012
, “
Control Synthesis and Verification for a Perching UAV Using LQR-Trees
,”
IEEE 51st Annual Conference on Decision and Control
(
CDC 2012
),
Maui, HI
, Dec. 10–13, pp.
3707
3714
.
7.
Hurst
,
A.
,
Wickenheiser
,
A.
, and
Garcia
,
E.
,
2008
, “
Localization and Perching Maneuver Tracking for a Morphing UAV
,”
IEEE/ION Position, Location and Navigation Symposium
(
PLANS
),
Monterey, CA
, May 5–8, pp.
1238
1245
.
8.
Hurst
,
A.
, and
Garcia
,
E.
,
2011
, “
Controller Design for a Morphing, Perching Aircraft
,”
Proc. SPIE
,
7977
, p.
79771L
.
9.
Gomez
,
J. C.
, and
Garcia
,
E.
,
2011
, “
Morphing Unmanned Aerial Vehicles
,”
Smart Mater. Struct.
,
20
(
10
), p.
103001
.
10.
Robertson
,
D. K.
, and
Reich
,
G. W.
,
2014
, “
Design and Perching Experiments of Bird-Like Remote Controlled Planes
,”
54th AIAA/ASME/ASCE/AHS/ASC Structures
, Structural Dynamics, and Materials Conference (
SDM
), Boston, Apr. 8–11, p.
17
.
11.
Desbiens
,
A. L.
,
Asbeck
,
A. T.
, and
Cutkosky
,
M. R.
,
2011
, “
Landing, Perching and Taking Off From Vertical Surfaces
,”
Int. J. Rob. Res.
,
30
(
3
), pp.
355
370
.
12.
Desbiens
,
A. L.
,
Asbeck
,
A. T.
, and
Cutkosky
,
M. R.
,
2011
, “
Scansorial Landing and Perching
,”
Robotics Research
,
Springer
,
Berlin
, pp.
169
184
.
13.
Glassman
,
E.
,
Desbiens
,
A. L.
,
Tobenkin
,
M.
,
Cutkosky
,
M.
, and
Tedrake
,
R.
,
2012
, “
Region of Attraction Estimation for a Perching Aircraft: A Lyapunov Method Exploiting Barrier Certificates
,”
IEEE International Conference on Robotics and Automation
(
ICRA
),
St. Paul, MN
, May 14–18, pp.
2235
2242
.
14.
Anderson
,
M. L.
,
Perry
,
C. J.
,
Hua
,
B. M.
,
Olsen
,
D. S.
,
Parcus
,
J. R.
,
Pederson
,
K. M.
, and
Jensen
,
D. D.
,
2009
, “
The Sticky-Pad Plane and Other Innovative Concepts for Perching UAVs
,”
47th AIAA Aerospace Sciences Meeting
, Orlando, FL, Jan. 5–8,
AIAA
Paper No. 2009-40.
15.
Cory
,
R.
, and
Tedrake
,
R.
,
2008
, “
Experiments in Fixed-Wing UAV Perching
,”
AIAA Guidance, Navigation, and Control Conference
,
Honolulu, HI
, Aug. 18–21,
AIAA
Paper No. 2008-7256.
16.
Nagendran
,
A.
,
Crowther
,
W.
, and
Richardson
,
R.
,
2012
, “
Biologically Inspired Legs for UAV Perched Landing
,”
IEEE Aerosp. Electron. Syst. Mag.
,
27
(
2
), pp.
4
13
.
17.
Bachmann
,
R. J.
,
Boria
,
F. J.
,
Vaidyanathan
,
R.
,
Ifju
,
P. G.
, and
Quinn
,
R. D.
,
2009
, “
A Biologically Inspired Micro-Vehicle Capable of Aerial and Terrestrial Locomotion
,”
Mech. Mach. Theory
,
44
(
3
), pp.
513
526
.
18.
Mellinger
,
D.
,
Shomin
,
M.
, and
Kumar
,
V.
,
2010
, “
Control of Quadrotors for Robust Perching and Landing
,”
International Powered Lift Conference 2010
,
Philadelphia, PA
, Oct. 5–7, pp.
119
126
.
19.
Kovač
,
M.
,
Germann
,
J.
,
Hürzeler
,
C.
,
Siegwart
,
R. Y.
, and
Floreano
,
D.
,
2009
, “
A Perching Mechanism for Micro Aerial Vehicles
,”
J. Micro-Nano Mechatronics
,
5
(
3–4
), pp.
77
91
.
20.
Mellinger
,
D.
,
Shomin
,
M.
,
Michael
,
N.
, and
Kumar
,
V.
,
2012
,
Cooperative Grasping and Transport Using Multiple Quadrotors
(Springer Tracts in Advanced Robotics),
Springer
,
Berlin
, pp.
545
558
.
21.
Mellinger
,
D.
,
Lindsey
,
Q.
,
Shomin
,
M.
, and
Kumar
,
V.
,
2011
, “
Design, Modeling, Estimation and Control for Aerial Grasping and Manipulation
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
),
San Francisco, CA
, Sept. 25–30, pp.
2668
2673
.
22.
Pounds
,
P. E.
,
Bersak
,
D. R.
, and
Dollar
,
A. M.
,
2012
, “
Stability of Small-Scale UAV Helicopters and Quadrotors With Added Payload Mass Under PID Control
,”
Auton. Robots
,
33
(
1–2
), pp.
129
142
.
23.
Ghadiok
,
V.
,
Goldin
,
J.
, and
Ren
,
W.
,
2012
, “
On the Design and Development of Attitude Stabilization, Vision-Based Navigation, and Aerial Gripping for a Low-Cost Quadrotor
,”
Auton. Robots
,
33
(
1–2
), pp.
41
68
.
24.
Thomas
,
J.
,
Polin
,
J.
,
Sreenath
,
K.
, and
Kumar
,
V.
,
2013
, “
Avian-Inspired Grasping for Quadrotor Micro UAVs
,”
ASME
Paper No. DETC2013-13289.
25.
Danko
,
T. W.
,
Kellas
,
A.
, and
Oh
,
P. Y.
,
2005
, “
Robotic Rotorcraft and Perch-and-Stare: Sensing Landing Zones and Handling Obscurants
,”
12th International Conference on Advanced Robotics
(
ICAR '05
),
Seattle, WA
, July 18–20, pp.
296
302
.
26.
Goldin
,
J. C.
,
2011
, “
Perching Using a Quadrotor With Onboard Sensing
,” Master’s thesis, Utah State University, Logan, UT.
27.
Daler
,
L.
,
Klaptocz
,
A.
,
Briod
,
A.
,
Sitti
,
M.
, and
Floreano
,
D.
,
2013
, “
A Perching Mechanism for Flying Robots Using a Fibre-Based Adhesive
,”
IEEE International Conference on Robotics and Automation
(
ICRA
),
Karlsruhe, Germany
, May 6–10, pp.
4433
4438
.
28.
Culler
,
E. S.
,
Thomas
,
G. C.
, and
Lee
,
C. L.
,
2012
, “
A Perching Landing Gear for a Quadcopter
,”
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conferecne
,
Honolulu, HI
, Apr. 23–26,
AIAA
Paper No. 2012-1722.
29.
Burroughs
,
M. L.
,
2014
, “
A Sarrus-Based Passive Mechanism for Rotorcraft Perching
,” Master’s thesis, University of Utah, Salt Lake City, UT.
30.
Freckleton
,
K. B.
,
2015
, “
Sarrus-Based Passive Mechanism for Rotorcraft Perching: Structural Design and Mass Optimization
,” B.S. Senior Honors thesis, University of Utah, Salt Lake City, UT.
You do not currently have access to this content.