This paper shows how the computation of the singularity locus of a 3R robot can be reduced to the analysis of the relative position of two coplanar ellipses. Since the relative position of two conics is a projective invariant and the basic projective geometric invariants are determinants, it is not surprising that, using distance geometry, the computation of the singularity locus of a 3R robot can be fully expressed in terms of determinants. Geometric invariants have the benefit of simplifying symbolic manipulations. This paper shows how their use leads to a simpler characterization, compared to previous approaches, of the cusps and nodes in the singularity loci of 3R robots.

References

References
1.
Wenger
,
P.
,
2007
, “
Cuspidal and Non-Cuspidal Robot Manipulators
,”
Robotica
,
25
(
6
), pp.
677
689
.
2.
Wenger
,
P.
,
2000
, “
Some Guidelines for the Kinematic Design of New Manipulators
,”
Mech. Mach. Theory
,
35
(
3
), pp.
437
449
.
3.
Paul
,
R.
, and
Zhang
,
H.
,
1986
, “
Computationally Efficient Kinematics for Manipulators With Spherical Wrists Based on the Homogeneous Transformation Representation
,”
Int. J. Rob. Res.
,
5
(
2
), pp.
32
44
.
4.
Husty
,
M.
,
Ottaviano
,
E.
, and
Ceccarelli
,
M.
,
2008
, “
A Geometrical Characterization of Workspace Singularities in 3R Manipulators
,”
Advances in Robot Kinematics: Analysis and Design
,
J.
Lenarčič
, and
Ph.
Wenger
, eds.,
Springer
, Dordrecht, The Netherlands, pp.
411
418
.
5.
Pieper
,
D. L.
,
1968
, “
The Kinematics of Manipulators Under Computer Control
,” Ph.D. thesis, Department of Mechanical Engineering, Stanford University, Stanford, CA.
6.
Kovács
,
P.
, and
Hommel
,
G.
,
1993
, “
On the Tangent-Half-Angle Substitution
,”
Computational Kinematics
,
J.
Angeles
,
G.
Hommel
, and
P.
Kovács
, eds.,
Kluwer Academic Publishers
,
Dordrecht
, The Netherlands, pp.
27
39
.
7.
Smith
,
D. R.
, and
Lipkin
,
H.
,
1993
, “
Higher Order Singularities of Regional Manipulators
,”
IEEE International Conference on Robotics and Automation
, Atlanta, GA, May 2–6, Vol.
1
, pp.
194
199
.
8.
Smith
,
D. R.
, and
Lipkin
,
H.
,
1990
, “
Kinematic Analysis of Solvable Manipulators Using Conic Sections
,”
21st ASME Mechanisms Conference
, Chicago, IL, Sept. 16–19, pp.
16
19
.
9.
Ceccarelli
,
M.
,
1989
, “
On the Workspace of 3R Robot Arms
,”
5th IFToMM International Symposium on Theory and Practice of Mechanism
,
Bucharest
, Romania, July 6–11, Vol.
II–1
, pp.
37
46
.
10.
Zein
,
M.
,
2007
, “
Analyse cinématique des manipulateurs sériels 3R orthogonaux et des manipulateurs parallèles plans
,” Ph.D. dissertation, École Central de Nantes, Université de Nantes, Nantes, France.
11.
Bamberger
,
H.
,
Wolf
,
A.
, and
Shoham
,
M.
,
2008
, “
Assembly Mode Changing in Parallel Mechanisms
,”
IEEE Trans. Rob.
,
24
(
4
), pp.
765
772
.
12.
Saramago
,
S. F. P.
,
Ottaviano
,
E.
, and
Ceccarelli
,
M.
,
2002
, “
A Characterization of the Workspace Boundary of Three-Revolute Manipulators
,”
ASME
Paper No. DETC2002/MECH-34342.
13.
Wenger
,
P.
,
1997
, “
Design of Cuspidal and Non-Cuspidal Robot Manipulators
,”
IEEE International Conference on Robotics and Automation
, Albuquerque, NM, Apr. 20–25, pp.
2172
2177
.
14.
Baili
,
M.
,
2004
, “
Analyse et classification de manipulateurs 3R à axes orthogonaux
,” Ph.D. dissertation, École Central de Nantes, Université de Nantes, Nantes, France.
15.
Donelan
,
P.
, and
Müller
,
A.
,
2011
, “
General Formulation of the Singularity Locus for a 3-DOF Regional Manipulator
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 9-13, pp. 3958–3963.
16.
Thomas
,
F.
,
2014
, “
Computing Cusps of 3R Robots Using Distance Geometry
,”
14th International Symposium on Advances in Robot Kinematics
(
ARK2014
),
Ljubljana, Slovenia
, June 29–July 3.
17.
Thomas
,
F.
, and
Ros
,
L.
,
2005
, “
Revisiting Trilateration for Robot Localization
,”
IEEE Trans. Rob.
,
21
(
1
), pp.
93
101
.
18.
Faucette
,
W. M.
,
1996
, “
A Geometric Interpretation of the Solution of the General Quartic Polynomial
,”
Am. Math. Mon.
,
103
(
1
), pp.
51
57
.
19.
Bôcher
,
M.
,
1915
,
Plane Analytic Geometry
,
Henry Holt and Co.
,
New York
, pp.
176
188
.
20.
Choi
,
Y.-K.
,
Wang
,
W.
,
Liu
,
Y.
, and
Kim
,
M.-S.
,
2006
, “
Continuous Collision Detection for Two Moving Elliptic Disks
,”
IEEE Trans. Rob.
,
22
(
2
), pp.
213
224
.
21.
Sommerville
,
D. M. Y.
,
1961
,
Analytical Conics
,
G. Bell & Sons,
London, UK, p.
274
.
22.
Richter-Gebert
,
J.
,
2011
,
Perspectives on Projective Geometry: A Guided Tour Through Real and Complex Geometry
,
Springer
, Dordrecht, The Netherlands, p.
191
.
23.
Salmon
,
G.
,
1869
,
A Treatise on Conic Sections
,
Chelsea Publishing Co.
, New York.
24.
Elizalde
,
B.
,
Alberich-Carramiñana
,
M.
, and
Thomas
,
F.
, “
On the Relative Position of Two Coplanar Ellipses
” (unpublished).
25.
Dickson
,
L. E.
,
1914
,
Elementary Theory of Equations
,
Wiley
,
New York
.
26.
Blinn
,
J. F.
,
2002
, “
Polynomial Discriminants. I. Matrix Magic
,”
IEEE Comput. Graphics Appl.
,
20
(
6
), pp.
94
98
.
27.
Dolgachev
,
I. V.
,
2012
,
Classical Algebraic Geometry: A Modern View
,
Cambridge University Press
,
Cambridge, UK
, p.
107
.
28.
Srinivasiengar
,
C. N.
,
1927
, “
On the Conditions for the Double Contact of Two Conics
,”
J. Mysore Univ.
,
1
(
2
), pp.
110
111
.
29.
Sylvester
,
J. J.
,
1904
, “
Additions to the Articles'On a New Class of Theorems' and ‘On Pascal's Theorem
,’”
Philos. Mag.
,
37
(251), pp.
363
370
, 1850 (reprinted in 1904, J. J. Sylvester's Mathematical Papers, Vol. 1, Cambridge University Press, Cambridge, UK, pp. 145–151).
30.
Morris
,
R.
,
1997
, “
The Use of Computer Graphics for Solving Problems in Singularity Theory
,”
Visualization and Mathematics, Experiments, Simulations and Environments
,
H. C.
Hege
, and
K.
Polthier
, eds.,
Springer
, Dordrecht, The Netherlands, pp.
53
66
.
31.
Thomas
,
F.
, and
Wenger
,
P.
,
2011
, “
On the Topological Characterization of Robot Singularity Loci. A Catastrophe-Theoretic Approach
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 9–13, pp.
3940
3945
.
You do not currently have access to this content.