This paper shows how the computation of the singularity locus of a 3R robot can be reduced to the analysis of the relative position of two coplanar ellipses. Since the relative position of two conics is a projective invariant and the basic projective geometric invariants are determinants, it is not surprising that, using distance geometry, the computation of the singularity locus of a 3R robot can be fully expressed in terms of determinants. Geometric invariants have the benefit of simplifying symbolic manipulations. This paper shows how their use leads to a simpler characterization, compared to previous approaches, of the cusps and nodes in the singularity loci of 3R robots.
Issue Section:
Research Papers
References
1.
Wenger
, P.
, 2007
, “Cuspidal and Non-Cuspidal Robot Manipulators
,” Robotica
, 25
(6
), pp. 677
–689
.2.
Wenger
, P.
, 2000
, “Some Guidelines for the Kinematic Design of New Manipulators
,” Mech. Mach. Theory
, 35
(3
), pp. 437
–449
.3.
Paul
, R.
, and Zhang
, H.
, 1986
, “Computationally Efficient Kinematics for Manipulators With Spherical Wrists Based on the Homogeneous Transformation Representation
,” Int. J. Rob. Res.
, 5
(2
), pp. 32
–44
.4.
Husty
, M.
, Ottaviano
, E.
, and Ceccarelli
, M.
, 2008
, “A Geometrical Characterization of Workspace Singularities in 3R Manipulators
,” Advances in Robot Kinematics: Analysis and Design
, J.
Lenarčič
, and Ph.
Wenger
, eds., Springer
, Dordrecht, The Netherlands, pp. 411
–418
.5.
Pieper
, D. L.
, 1968
, “The Kinematics of Manipulators Under Computer Control
,” Ph.D. thesis, Department of Mechanical Engineering, Stanford University, Stanford, CA.6.
Kovács
, P.
, and Hommel
, G.
, 1993
, “On the Tangent-Half-Angle Substitution
,” Computational Kinematics
, J.
Angeles
, G.
Hommel
, and P.
Kovács
, eds., Kluwer Academic Publishers
, Dordrecht
, The Netherlands, pp. 27
–39
.7.
Smith
, D. R.
, and Lipkin
, H.
, 1993
, “Higher Order Singularities of Regional Manipulators
,” IEEE International Conference on Robotics and Automation
, Atlanta, GA, May 2–6, Vol. 1
, pp. 194
–199
.8.
Smith
, D. R.
, and Lipkin
, H.
, 1990
, “Kinematic Analysis of Solvable Manipulators Using Conic Sections
,” 21st ASME Mechanisms Conference
, Chicago, IL, Sept. 16–19, pp. 16
–19
.9.
Ceccarelli
, M.
, 1989
, “On the Workspace of 3R Robot Arms
,” 5th IFToMM International Symposium on Theory and Practice of Mechanism
, Bucharest
, Romania, July 6–11, Vol. II–1
, pp. 37
–46
.10.
Zein
, M.
, 2007
, “Analyse cinématique des manipulateurs sériels 3R orthogonaux et des manipulateurs parallèles plans
,” Ph.D. dissertation, École Central de Nantes, Université de Nantes, Nantes, France.11.
Bamberger
, H.
, Wolf
, A.
, and Shoham
, M.
, 2008
, “Assembly Mode Changing in Parallel Mechanisms
,” IEEE Trans. Rob.
, 24
(4
), pp. 765
–772
.12.
Saramago
, S. F. P.
, Ottaviano
, E.
, and Ceccarelli
, M.
, 2002
, “A Characterization of the Workspace Boundary of Three-Revolute Manipulators
,” ASME
Paper No. DETC2002/MECH-34342. 13.
Wenger
, P.
, 1997
, “Design of Cuspidal and Non-Cuspidal Robot Manipulators
,” IEEE International Conference on Robotics and Automation
, Albuquerque, NM, Apr. 20–25, pp. 2172
–2177
.14.
Baili
, M.
, 2004
, “Analyse et classification de manipulateurs 3R à axes orthogonaux
,” Ph.D. dissertation, École Central de Nantes, Université de Nantes, Nantes, France.15.
Donelan
, P.
, and Müller
, A.
, 2011
, “General Formulation of the Singularity Locus for a 3-DOF Regional Manipulator
,” IEEE International Conference on Robotics and Automation
(ICRA
), Shanghai, China, May 9-13, pp. 3958–3963.16.
Thomas
, F.
, 2014
, “Computing Cusps of 3R Robots Using Distance Geometry
,” 14th International Symposium on Advances in Robot Kinematics
(ARK2014
), Ljubljana, Slovenia
, June 29–July 3.17.
Thomas
, F.
, and Ros
, L.
, 2005
, “Revisiting Trilateration for Robot Localization
,” IEEE Trans. Rob.
, 21
(1
), pp. 93
–101
.18.
Faucette
, W. M.
, 1996
, “A Geometric Interpretation of the Solution of the General Quartic Polynomial
,” Am. Math. Mon.
, 103
(1
), pp. 51
–57
.19.
Bôcher
, M.
, 1915
, Plane Analytic Geometry
, Henry Holt and Co.
, New York
, pp. 176
–188
.20.
Choi
, Y.-K.
, Wang
, W.
, Liu
, Y.
, and Kim
, M.-S.
, 2006
, “Continuous Collision Detection for Two Moving Elliptic Disks
,” IEEE Trans. Rob.
, 22
(2
), pp. 213
–224
.21.
Sommerville
, D. M. Y.
, 1961
, Analytical Conics
, G. Bell & Sons,
London, UK, p. 274
.22.
Richter-Gebert
, J.
, 2011
, Perspectives on Projective Geometry: A Guided Tour Through Real and Complex Geometry
, Springer
, Dordrecht, The Netherlands, p. 191
.23.
Salmon
, G.
, 1869
, A Treatise on Conic Sections
, Chelsea Publishing Co.
, New York.24.
Elizalde
, B.
, Alberich-Carramiñana
, M.
, and Thomas
, F.
, “On the Relative Position of Two Coplanar Ellipses
” (unpublished).25.
Dickson
, L. E.
, 1914
, Elementary Theory of Equations
, Wiley
, New York
.26.
Blinn
, J. F.
, 2002
, “Polynomial Discriminants. I. Matrix Magic
,” IEEE Comput. Graphics Appl.
, 20
(6
), pp. 94
–98
.27.
Dolgachev
, I. V.
, 2012
, Classical Algebraic Geometry: A Modern View
, Cambridge University Press
, Cambridge, UK
, p. 107
.28.
Srinivasiengar
, C. N.
, 1927
, “On the Conditions for the Double Contact of Two Conics
,” J. Mysore Univ.
, 1
(2
), pp. 110
–111
.29.
Sylvester
, J. J.
, 1904
, “Additions to the Articles'On a New Class of Theorems' and ‘On Pascal's Theorem
,’” Philos. Mag.
, 37
(251), pp. 363
–370
, 1850 (reprinted in 1904, J. J. Sylvester's Mathematical Papers, Vol. 1, Cambridge University Press, Cambridge, UK, pp. 145–151).30.
Morris
, R.
, 1997
, “The Use of Computer Graphics for Solving Problems in Singularity Theory
,” Visualization and Mathematics, Experiments, Simulations and Environments
, H. C.
Hege
, and K.
Polthier
, eds., Springer
, Dordrecht, The Netherlands, pp. 53
–66
.31.
Thomas
, F.
, and Wenger
, P.
, 2011
, “On the Topological Characterization of Robot Singularity Loci. A Catastrophe-Theoretic Approach
,” IEEE International Conference on Robotics and Automation
(ICRA
), Shanghai, China, May 9–13, pp. 3940
–3945
.Copyright © 2016 by ASME
You do not currently have access to this content.