There is an increasing need for XY compliant parallel micromanipulators (CPMs) providing good performance characteristics such as large motion range, well-constrained cross-axis coupling, and parasitic rotation. Decoupled topology design of the CPMs can easily realize these merits without increasing the difficulty of controlling. This paper proposes an improved 4-PP model on the basis of a classical 4-PP model and both of them are selected for manufacturing and testing to verify the effectiveness of the improvement. It has shown from experimental results that there is a large improvement on the performances of improved 4-PP compliant parallel manipulator (CPM): large range of motion up to 5 mm × 5 mm in the unidirection in the dimension of 311 mm × 311 mm × 24 mm, smaller compliance fluctuation (only 36.63% of that of the initial 4-PP model), smaller cross-axis coupling (only 28.10% of that of the initial 4-PP model generated by a single-axis 5 mm actuation), smaller in-plane parasitic yaw (only 57.14% of that of the initial 4-PP model generated by double-axis 5 mm actuation).

References

References
1.
Smith
,
S. T.
, and
Chetwynd
,
D. G.
,
1992
,
Foundations of Ultraprecision Mechanism Design
,
CRC Press
,
New York
.
2.
Ananthasuresh
,
G. K.
, and
Sridhar
,
K.
,
1995
, “
Designing Compliant Mechanisms
,”
Mech. Eng.
,
117
(
11
), pp.
93
96
.
3.
Salaita
,
K.
,
Wang
,
Y.
, and
Mirkin
,
C. A.
,
2007
, “
Applications of Dip-Pen Nanolithography
,”
Nat. Nanotechnol.
,
2
(
3
), pp.
145
155
.10.1038/nnano.2007.39
4.
Mirkin
,
C. A.
,
2001
, “
Dip-Pen Nanolithography: Automated Fabrication of Custom Multicomponent, Sub-100-Nanometer Surface Architectures
,”
MRS Bull.
,
26
(
7
), pp.
535
538
10.1557/mrs2001.126
5.
Schitter
,
G.
,
Thurner
,
P. J.
, and
Hansma
,
P. K.
,
2008
, “
Design and Input-Shaping Control of a Novel Scanner for High-Speed Atomic Force Microscopy
,”
Mechatronics
,
18
(
5–6
), pp.
282
288
.10.1016/j.mechatronics.2008.02.007
6.
Ding
,
H.
, and
Xiong
,
Z.
,
2006
, “
Motion Stages for Electronic Packaging Design and Control
,”
IEEE Rob. Autom. Mag.
,
13
(
4
), pp.
51
61
.10.1109/MRA.2006.250562
7.
Vettiger
,
P.
,
Despont
,
M.
,
Drechsler
,
U.
,
Durig
,
U.
,
Haberle
,
W.
,
Lutwyche
,
M. I.
,
Rothuizen
,
H. E.
,
Stutz
,
R.
,
Widmer
,
R.
, and
Binnig
,
G. K.
,
2000
, “
The ‘Millipede’—More Than Thousand Tips for Future AFM Storage
,”
IBM J. Res. Dev.
,
44
(
3
), pp.
323
340
.10.1147/rd.443.0323
8.
Awtar
,
S.
, and
Parmar
,
G.
,
2013
, “
Design of a Large Range XY Nanopositioning System
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021008
.10.1115/1.4023874
9.
Awtar
,
S.
, and
Slocum
,
A. H.
,
2007
, “
Constraint-Based Design of Parallel Kinematic XY Flexure Mechanisms
,”
ASME J. Mech. Des.
,
129
(
8
), pp.
816
830
.10.1115/1.2735342
10.
Choi
,
K. B.
, and
Kim
,
D. H.
,
2006
, “
Monolithic Parallel Linear Compliant Mechanism for Two Axes Ultraprecision Linear Motion
,”
Rev. Sci. Instrum.
,
77
(
6
), p.
065106
.10.1063/1.2207368
11.
Hao
,
G.
, and
Kong
,
X.
,
2012
, “
A Novel Large-Range XY Compliant Parallel Manipulator With Enhanced Out-of-Plane Stiffness
,”
ASME J. Mech. Des.
,
134
(
6
), p.
061009
.10.1115/1.4006653
12.
Li
,
Y.
, and
Xu
,
Q.
,
2009
, “
Design and Analysis of a Totally Decoupled Flexure-Based XY Parallel Micromanipulator
,”
IEEE Trans. Rob.
,
25
(
3
), pp.
645
657
.10.1109/TRO.2009.2014130
13.
Li
,
Y.
, and
Xu
,
Q.
,
2009
, “
Modeling and Performance Evaluation of a Flexure-Based XY Parallel Micromanipulator
,”
Mech. Mach. Theory
,
44
(
12
), pp.
2127
2152
.10.1016/j.mechmachtheory.2009.06.002
14.
Dinesh
,
M.
, and
Ananthasuresh
,
G. K.
,
2010
, “
Micro-Mechanical Stages With Enhanced Range
,”
Int. J. Adv. Eng. Sci. Appl. Math.
,
2
(
1–2
), pp.
35
43
.10.1007/s12572-010-0014-7
15.
Li
,
Y. M.
,
Huang
,
J. M.
, and
Tang
,
H.
,
2012
, “
A Compliant Parallel XY Micromotion Stage With Complete Kinematic Decoupling
,”
IEEE Trans. Autom. Sci. Eng.
,
9
(
3
), pp.
538
553
.10.1109/TASE.2012.2198466
16.
Alper
,
S. E.
,
Azgin
,
K.
, and
Akin
,
T.
,
2006
, “
High-Performance SOI-MEMS Gyroscope With Decoupled Oscillation Modes
,”
19th IEEE International Conference on Micro Electro Mechanical Systems
(
MEMS 2006
), Istanbul, Turkey, Jan. 22–26, pp.
70
73
.10.1109/MEMSYS.2006.1627738
17.
Su
,
H. J.
,
2011
, “
Mobility Analysis of Flexure Mechanisms Via Screw Algebra
,”
ASME J. Mech. Rob.
,
3
(
4
), p.
041010
.10.1115/1.4004910
18.
Dong
,
J. Y.
, and
Ferreira
,
P. M.
,
2009
, “
Electrostatically Actuated Cantilever With SOI-MEMS Parallel Kinematic XY Stage
,”
J. Microelectromech. Syst.
,
18
(
3
), pp.
641
651
.10.1109/JMEMS.2009.2020371
19.
Li
,
Y. M.
, and
Xu
,
Q. S.
,
2006
, “
A Novel Design and Analysis of a 2-DOF Compliant Parallel Micromanipulator for Nanomanipulation
,”
IEEE Trans. Autom. Sci. Eng.
,
3
(
3
), pp.
247
254
.10.1109/TASE.2006.875533
20.
Trease
,
B. P.
,
Moon
,
Y. M.
, and
Kota
,
S.
,
2005
, “
Design of Large-Displacement Compliant Joints
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
788
798
.10.1115/1.1900149
21.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
22.
Shan
,
H. Z.
,
2009
,
Mechanics of Materials (I)
,
Higher Education Press
,
B
eijing
, (in Chinese).
You do not currently have access to this content.