We study 4-universal-prismatic-universal (UPU) parallel manipulators performing Schoenflies motion and show that they can have extra modes of operation with three degrees of freedom (3DOF), depending on the geometric parameters of the manipulators. We show that the transition between the different modes occurs along self-motion of the manipulator in the Schoenflies mode.

References

References
1.
Rolland
,
L.
,
1999
, “
The Manta and the Kanuk: Novel 4 DOF Parallel Mechanism for Industrial Handling
,”
Proceedings of the ASME Dynamic Systems and Control Division Conference (IMECE'99)
,
Nashville, TN
, Nov. 14–19, Vol.
67
, pp.
831
844
.
2.
Pierrot
,
F.
, and
Company
,
O.
,
1999
, “
H4: A New Family of 4-DOF Parallel Robots
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
),
Atlanta, GA
, Sept. 19–23, pp.
508
513
.10.1109/AIM.1999.803222
3.
Zhao
,
T. S.
,
Dai
,
J. S.
, and
Huang
,
Z.
,
2002
, “
Geometric Analysis of Overconstrained Parallel Manipulators With Three and Four Degrees of Freedom
,”
JSME Int. J. Ser. C
,
45
(
3
), pp.
730
740
.10.1299/jsmec.45.730
4.
Company
,
O.
,
Marquet
,
F.
, and
Pierrot
,
F.
,
2003
, “
A New High Speed 4-DOF Parallel Robot Synthesis and Modeling Issues
,”
IEEE Trans. Rob. Autom.
,
19
(
3
), pp.
411
420
.10.1109/TRA.2003.810232
5.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2004
, “
Type Synthesis of 3T1R 4-DOF Parallel Manipulators Based on Screw Theory
,”
IEEE Trans. Rob. Autom.
,
20
(
2
), pp.
181
190
.10.1109/TRA.2003.820853
6.
Li
,
Q.-C.
, and
Huang
,
Z.
,
2004
, “
Mobility Analysis of a Novel 3-5R Parallel Mechanism Family
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
79
82
.10.1115/1.1637651
7.
Zhao
,
T. S.
,
Li
,
Y. W.
,
Chen
,
J.
, and
Wang
,
J. C.
,
2006
, “
Novel Four-DOF Parallel Manipulator Mechanism and Its Kinematics
,”
IEEE Conference on Robotics
,
Automation and Mechatronics
(
RAM
),
Bangkok, Thailand
, June 1–3.10.1109/RAMECH.2006.252672
8.
Gogu
,
G.
,
2007
, “
Structural Synthesis of Fully Isotropic Parallel Robots With Schoenflies Motions Via Theory of Linear Transformations and Evolutionary Morphology
,”
Eur. J. Mech. A/Solids
,
26
(
2
), pp.
242
269
.10.1016/j.euromechsol.2006.06.001
9.
Amine
,
S.
,
Caro
,
S.
,
Wenger
,
P.
, and
Kanaan
,
D.
,
2012
, “
Singularity Analysis of the H4 Robot Using Grassmann–Cayley Algebra
,”
Robotica
,
30
(
7
), pp.
1109
1118
.10.1017/S0263574711001330
10.
Amine
,
S.
,
Tale-Masouleh
,
M.
,
Caro
,
S.
,
Wenger
,
P.
, and
Gosselin
,
C.
,
2012
, “
Singularity Conditions of 3T1R Parallel Manipulators With Identical Limb Structures
,”
ASME J. Mech. Rob.
,
4
(
1
), p.
011011
.10.1115/.4005336
11.
Solazzi
,
M.
,
Gabardi
,
M.
,
Frisoli
,
A.
, and
Bergamasco
,
M.
,
2014
, “
Kinematics Analysis and Singularity Loci of a 4-UPU Parallel Manipulator
,”
Advances in Robot Kinematics
,
J.
Lenarçic
and
O.
Khatib
, eds.,
Springer
, Cham, Switerzland, pp.
467
474
.
12.
Schadlbauer
,
J.
,
Walter
,
D. R.
, and
Husty
,
M. L.
,
2014
, “
The 3-RPS Parallel Manipulator From an Algebraic Viewpoint
,”
Mech. Mach. Theory
,
75
, pp.
161
176
.10.1016/j.mechmachtheory.2013.12.007
13.
Zhao
,
J.
,
Feng
,
Z.
,
Chu
,
F.
, and
Ma
,
N.
,
2013
,
Advanced Theory of Constraint and Motion Analysis for Robot Mechanisms
,
Academic Press
, Waltham, MA.
14.
Husty
,
M. L.
,
Schadlbauer
,
J.
,
Caro
,
S.
, and
Wenger
,
P.
,
2012
, “
Self-Motions of 3-RPS Manipulators
,”
New Trends in Mechanism and Machine Science, Theory and Application in Engineering
(Mechanism and Machine Science, Vol. 7),
F.
Viadero
, and
M.
Ceccarelli
, eds.,
Springer-Verlag
, Dordrecht, The Netherlands, pp.
121
130
.
You do not currently have access to this content.