An orienting platform is a mechanism which allows rotation of a spatial object without translational motion of that object. In this work, we study a parallel platform with one passive nonholonomic spherical joint and two series of spherical, actuated prismatic and universal joints (the platform is also known in literature as an (nS)-2SPU wrist). To solve the control and motion planning problems, an analytic approach is used. The design of practical stabilization and tracking algorithm is based on transverse functions and a method for motion planning respecting mechanical singularities is derived from endogenous configuration space approach. It is shown that the system is controllable and locally equivalent to the chained form system. Then, the stabilization, tracking, and motion planning algorithms are proposed. Results are verified with computer simulations. A combination of the open-loop motion planning algorithm and the closed-loop tracking provide a tool for designing a motion planning algorithm respecting mechanical singularities and robust to input disturbances.

References

References
1.
Di Gregorio
,
R.
,
2012
, “
Type Synthesis of Underactuated Wrists Generated From Fully-Parallel Wrists
,”
ASME J. Mech. Des.
,
134
(
12
), p.
124501
.10.1115/1.4007399
2.
Di Gregorio
,
R.
,
2012
, “
Kinematic Analysis of the (nS)-2SPU Underactuated Parallel Wrist
,”
ASME J. Mech. Rob.
,
4
(
3
), p.
031006
.10.1115/1.4006832
3.
Di Gregorio
,
R.
,
2012
, “
Position Analysis and Path Planning of the S-(nS)PU-SPU and S-(nS)PU-2SPU Underactuated Wrists
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021006
.10.1115/1.4006191
4.
Di Gregorio
,
R.
,
2014
, “
Position Analysis, Path Planning, and Kinetostatics of Single-Loop RU-(nS)PU Wrists
,”
Mech. Mach. Theory
,
74
, pp.
117
133
.10.1016/j.mechmachtheory.2013.12.002
5.
Grosch
,
P.
,
Di Gregorio
,
R.
, and
Thomas
,
F.
,
2010
, “
Generation of Under-Actuated Manipulators With Nonholonomic Joints From Ordinary Manipulators
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
011005
.10.1115/1.4000527
6.
Nakamura
,
Y.
,
Chung
,
W.
, and
Sordalen
,
O. J.
,
2001
, “
Design and Control of the Nonholonomic Manipulator
,”
IEEE Trans. Rob. Autom.
,
1
(
17
), pp.
48
59
.10.1109/70.917082
7.
Mazur
,
A.
,
2010
, “
Trajectory Tracking Control in Workspace-Defined Tasks for Nonholonomic Mobile Manipulators
,”
Robotica
,
28
(
1
), pp.
57
68
.10.1017/S0263574709005578
8.
Grosch
,
J.
, and
Thomas
,
F.
,
2013
, “
A Bilinear Formulation for the Motion Planning of Non-Holonomic Parallel Orienting Platforms
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
),
Tokyo
, Nov. 3–7, pp.
953
958
.10.1109/IROS.2013.6696465
9.
Grosch
,
P.
, and
Thomas
,
F.
, “
Motion Planning of a Non-Holonomic Parallel Orienting Platform
,” (preprint).
10.
Brockett
,
R. W.
,
1983
, “
Asymptotic Stability and Feedback Stabilization
,”
Differential Geometric Control Theory
,
Birkhäuser
,
Boston, MA
, pp.
171
181
.
11.
Lizárraga
,
D. A.
,
2004
, “
Obstructions to the Existence of Universal Stabilizers for Smooth Control Systems
,”
Math. Control Signals Syst.
,
16
(
4
), pp.
255
277
.10.1007/s00498-003-0140-x
12.
Morin
,
P.
, and
Samson
,
C.
,
2003
, “
Practical Stabilization of Driftless Systems on Lie Groups: The Transverse Function Approach
,”
IEEE Trans. Autom. Control
,
48
(
9
), pp.
1496
1508
.10.1109/TAC.2003.816963
13.
Morin
,
P.
, and
Samson
,
C.
,
2009
, “
Control of Nonholonomic Mobile Robots Based on the Transverse Function Approach
,”
IEEE Trans. Rob.
,
25
(
5
), pp.
1058
1073
.10.1109/TRO.2009.2014123
14.
Magiera
,
W.
,
2014
, “
Motion Control of Non-Standard Nonholonomic Mobile Robots
,” Ph.D. thesis,
Wrocław University of Technology
,
Wrocław, Poland
(in Polish).
15.
Jakubiak
,
J.
,
Tchoń
,
K.
, and
Magiera
,
W.
,
2010
, “
Motion Planning in Velocity Affine Mechanical Systems
,”
Int. J. Control
,
83
(
9
), pp.
1965
1974
.10.1080/00207179.2010.501390
16.
Tchoń
,
K.
, and
Jakubiak
,
J.
,
2014
, “
Motion Planning of Non-Holonomic Parallel Orienting Platform: A Jacobian Approach
,”
Advances in Robot Kinematics
,
Springer
, Cham, Switzerland, pp.
95
103
.
17.
Sachkov
,
Y. L.
,
2000
, “
Controllability of Invariant Systems on Lie Groups and Homogeneous Spaces
,”
J. Math. Sci.
,
100
(
4
), pp.
2355
2427
.10.1007/s10958-000-0002-8
18.
Murray
,
R. M.
,
1994
, “
Nilpotent Bases for a Class of Nonintegrable Distributions With Applications to Trajectory Generation for Nonholonomic Systems
,”
Math. Control Signals Syst.
,
7
(
1
), pp.
58
75
.10.1007/BF01211485
19.
Selig
,
J. M.
,
2005
,
Geometric Fundamentals of Robotics
,
Springer Science+ Business Media B. V., Berlin
.
20.
Cunha
,
R.
,
Silvestre
,
C.
, and
Hespanha
,
J.
,
2008
, “
Output-Feedback Control for Stabilization on SE(3)
,”
Syst. Control Lett.
,
57
(12), pp.
1013
1022
.10.1016/j.sysconle.2008.06.008
21.
Tchoń
,
K.
, and
Jakubiak
,
J.
,
2003
, “
Endogenous Configuration Space Approach to Mobile Manipulators: A Derivation and Performance Assessment of Jacobian Inverse Kinematics Algorithms
,”
Int. J. Control
,
76
(
9
), pp.
1387
1419
.10.1080/0020717031000149942
22.
Tchoń
,
K.
,
Jakubiak
,
J.
,
Grosch
,
P.
, and
Thomas
,
F.
,
2012
, “
Motion Planning for Parallel Robots With Non-Holonomic Joints
,”
Latest Advances in Robot Kinematics
,
Springer
, Dordrecht, pp.
115
122
.
23.
Paszuk
,
D., K, T.
, and
Pietrowska
,
Z.
,
2012
, “
Motion Planning of the Trident Snake Robot Equipped With Passive or Active Wheels
,”
Bull. Pol. Acad. Sci., Tech. Sci.
,
60
(
3
), pp.
547
555
.10.2478/v10175-012-0067-9
24.
Janiak
,
M.
, and
Tchoń
,
K.
,
2011
, “
Constrained Motion Planning of Nonholonomic Systems
,”
Syst. Control Lett.
,
60
(
9
), pp.
625
631
.10.1016/j.sysconle.2011.04.022
25.
Ratajczak
,
A.
, and
Tchoń
,
K.
,
2013
, “
Multiple-Task Motion Planning of Non-Holonomic Systems With Dynamics
,”
Mech. Sci.
,
4
(
1
), pp.
153
156
.10.5194/ms-4-153-2013
You do not currently have access to this content.