Parallel manipulators (PMs) with multiple operation modes are novel reconfigurable PMs, which use less number of actuators and can be reconfigured without disassembly. This paper deals with the type synthesis of 2-DOF (degrees-of-freedom) PMs with both spherical translation mode and sphere-on-sphere rolling mode. A spherical translation is the 2-DOF spatial translation under which the trajectory of any point on the moving link is a sphere. A sphere-on-sphere rolling refers to the rolling of a sphere without slipping and spinning on another sphere of the same diameter. At first, a 2-DOF 3-4R overconstrained PM is proposed based on an existing 5-DOF US equivalent PM. From this 2-DOF PM, we further obtain a 3-4R PM for sphere-on-sphere rolling and a 3-4R PM for spherical translation. By finding the common conditions for the 2-DOF 3-4R PM for spherical translation and 2-DOF 3-4R PM for sphere-on-sphere rolling, the types of 2-DOF 3-4R PMs with both spherical translation mode and sphere-on-sphere rolling mode are then obtained. The 2-DOF 3-4R PMs with both spherical translation mode and sphere-on-sphere rolling mode fall into two classes. In one class of PMs with both spherical translation mode and sphere-on-sphere rolling mode, the moving platform has four instantaneous DOF in a transition configuration. In another class of PMs with both spherical translation mode and sphere-on-sphere rolling mode, the moving platform has at most three instantaneous DOF in a transition configuration. This work enriches the types of PMs with multiple operation modes and overconstrained mechanisms.

References

References
1.
Hervé
,
J. M.
, and
Sparacino
,
F.
,
1991
, “
Structural Synthesis of `Parallel' Robots Generating Spatial Translation
,”
Fifth International Conference on Advanced Robotics
(
91 ICAR
), Pisa, Italy, June 19–22, pp.
808
813
. 10.1109/ICAR.1991.240575
2.
Li
,
Q.-C.
, and
Huang
,
Z.
,
2003
, “
Type Synthesis of 4-DOF Parallel Manipulators
,”
2003 IEEE International Conference on Robotics and Automation
(
ICRA '03
), Taipei, Taiwan, Sept. 14–19, pp. 755–560. 10.1109/ROBOT.2003.1241684
3.
Angeles
,
J.
,
2004
, “
The Qualitative Synthesis of Parallel Manipulators
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
617
624
.10.1115/1.1667955
4.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2004
, “
Type Synthesis of 3T1R 4-DOF Parallel Manipulators Based on Screw Theory
,”
IEEE Trans. Rob. Autom.
,
20
(
2
), pp.
181
190
.10.1109/TRA.2003.820853
5.
Yang
,
T.-L.
,
Jin
,
Q.
,
Liu
,
A.-X.
,
Yao
,
F.-H.
, and
Luo.
,
Y.
,
2001
, “
Structure Synthesis of 4-DOF (3-Translation and 1-Rotation) Parallel Robot Mechanisms Based on the Units of Single-Opened Chain
,”
ASME
Paper No. DETC2001/DAC-21152.10.1115/DETC2001/DAC-21152
6.
Yang
,
T.
,
2004
,
Topology Structure Design of Robot Mechanisms
,
China Machine Press
,
Beijing, China
(in Chinese).
7.
Fang
,
Y.
, and
Tsai
,
L.-W.
,
2004
, “
Analytical Identification of Limb Structures for Translational Parallel Manipulators
,”
J. Rob. Syst.
,
21
(
5
), pp.
209
218
.10.1002/rob.20010
8.
Gogu
,
G.
,
2004
, “
Fully-Isotropic T3R1-Type Parallel Manipulators
,”
On Advances in Robot Kinematics
,
J.
Lenarcic
and
C.
Galletti
, eds.,
Kluwer Academic
,
Dordrecht, The Netherlands
, pp.
265
272
.
9.
Kong
,
X.
, and
Gosselin
,
C.
,
2007
,
Type Synthesis of Parallel Mechanisms
,
Springer
,
Dordrecht, The Netherlands
.
10.
Meng
,
J.
,
Liu
,
G.
, and
Li
,
Z.
,
2007
, “
A Geometric Theory for Analysis and Synthesis of Sub-6 DOF Parallel Manipulators
,”
IEEE Trans. Rob.
,
23
(
4
), pp.
625
649
.10.1109/TRO.2007.898995
11.
Salgado
,
O.
,
Altuzarra
,
O.
,
Petuya
,
V.
, and
Hernández
,
A.
,
2008
, “
Synthesis and Design of a Novel 3T1R Fully-Parallel Manipulator
,”
ASME J. Mech. Des.
,
130
(
4
), p.
042305
.10.1115/1.2839005
12.
Rico
,
J. M.
,
Cervantes-Sánchez
,
J. J.
,
Tadeo-Chávez
,
A.
,
Prez-Soto
,
G. I.
, and
Rocha-Chavarra
,
J.
,
2008
, “
New Considerations on the Theory of Type Synthesis of Fully Parallel Platforms
,”
ASME J. Mech. Des.
,
130
(
11
), p.
112302
.10.1115/1.2976447
13.
Pierrot
,
F.
,
Nabat
,
V.
,
Company
,
O.
,
Krut
,
S.
, and
Poignet
,
P.
,
2009
Optimal Design of a 4-DOF Parallel Manipulator: From Academia to Industry
,”
IEEE Trans. Rob.
,
25
(
2
), pp.
212
224
.10.1109/TRO.2008.2011412
14.
Gao
,
F.
,
Yang
,
J.
, and
Ge
,
J. Q.
,
2010
, “
Type Synthesis of Parallel Mechanisms Having the Second Class GF Sets and Two Dimensional Rotations
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
011003
.10.1115/1.4002697
15.
Zlatanov
,
D.
,
Bonev
,
I. A.
, and
Gosselin
,
C. M.
,
2002
, “
Constraint Singularities as C-Space Singularities
,”
Advances in Robot Kinematics—Theory and Applications
,
J.
Lenarčič
and
F.
Thomas
, eds.,
Kluwer Academic Publishers
,
Norwell, Dordrecht, The Netherlands
, pp.
183
192
.
16.
Fanghella
,
P.
,
Galleti
,
C.
, and
Gianotti
,
E.
,
2006
, “
Parallel Robots That Change Their Group of Motion
,”
Advances in Robot Kinematics
,
Springer
,
Dordrecht, The Netherlands
, pp.
49
56
.
17.
Kong
,
X.
,
Gosselin
,
C.
, and
Richard
,
P. L.
,
2007
, “
Type Synthesis of Parallel Mechanisms With Multiple Operation Modes
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
595
601
.10.1115/1.2717228
18.
Refaat
,
S.
,
Hervé
,
J. M.
,
Nahavandi
,
S.
, and
Trinh
,
H.
,
2007
, “
Two-Mode Overconstrained Three-DOFs Rotational-Translational Linear-Motor-Based Parallel Kinematics Mechanism for Machine Tool Applications
,”
Robotica
,
25
(
4
), pp.
461
466
.10.1017/S0263574706003286
19.
Li
,
Q.
, and
Hervé
,
J. M.
,
2009
, “
Parallel Mechanisms With Bifurcation of Schoenflies Motion
,”
IEEE Trans. Rob.
,
25
(
1
), pp.
158
164
.10.1109/TRO.2008.2008737
20.
Gogu
,
G.
,
2011
, “
Maximally Regular T2R1-Type Parallel Manipulators With Bifurcated Spatial Motion
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
011010
.10.1115/1.4003180
21.
Kong
,
X.
,
2013
, “
Type Synthesis of 3-DOF Parallel Manipulators With Both a Planar Operation Mode and a Spatial Translational Operation Mode
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041015
.10.1115/1.4025219
22.
Kong
,
X.
,
2012
, “
Type Synthesis of Variable Degree-of-Freedom Parallel Manipulators With Both Planar and 3T1R Operation Modes
,”
ASME
Paper No. DETC2012-70621.10.1115/DETC2012-70621
23.
Gan
,
D.
,
Dai
,
J. S.
, and
Liao
,
Q.
,
2009
, “
Mobility Change in Two Types of Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041007
.10.1115/1.3211023
24.
Zhang
,
K. T.
,
Dai
,
J. S.
, and
Fang
,
Y. F.
,
2012
, “
Geometric Constraint and Mobility Variation of Two 3-SPS Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Rob.
,
135
(
1
), p.
011001
.10.1115/1.4007920
25.
Gao
,
F.
,
Li
,
W.
,
Zhao
,
X.
,
Jin
,
Z.
, and
Zhao
,
H.
,
2002
, “
New Kinematic Structures for 2-, 3-, 4-, and 5-DOF Parallel Manipulator Designs
,”
Mech. Mach. Theory
,
37
(
11
), pp.
1395
1411
.10.1016/S0094-114X(02)00044-7
26.
Sofka
,
J.
,
Skormin
,
V.
,
Nikulin
,
V.
,
Nicholson
,
D. J.
, and
Rosheim
,
M.
,
2004
, “
New Generation of Gimbals Systems for Laser Positioning Applications
,”
Proc. SPIE
,
5160
, pp.
182
191
.10.1117/12.506128
27.
Wu
,
K.
,
Yu
,
J.
,
Zong
,
G.
, and
Kong
,
X.
,
2014
, “
A Family of Rotational Parallel Manipulators With Equal-Diameter Spherical Pure Rotation
,”
ASME J. Mech. Rob.
,
6
(
1
), p.
011008
.10.1115/1.4025860
28.
Culver
,
I. H.
,
1969
, “
Constant Velocity Universal Joint
,” U.S. Patent No. 3,477,249.
29.
Carricato
,
M.
,
2009
, “
Decoupled and Homokinetic Transmission of Rotational Motion Via Constant-Velocity Joints in Closed-Chain Orientational Manipulators
,”
ASME J. Mech. Des.
,
1
(
4
), p.
041008
.10.1115/1.3211025
30.
Li
,
Q.-C.
, and
Hervé
,
J. M.
,
2010
, “
1T2R Parallel Mechanism Without Parasitic Motion
,”
IEEE Trans. Rob.
,
26
(
3
), pp.
401
410
.10.1109/TRO.2010.2047528
31.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2006
, “
Type Synthesis of Three-DOF UP-Equivalent Parallel Manipulators Using a Virtual Chain Approach
,”
Advances in Robot Kinematics: Mechanism and Motion
,
J.
Lenarcic
and
B.
Roth
, eds.,
Springer
,
Dordrecht, The Netherlands
, pp.
123
132
.
32.
Hunt
,
K. H.
,
1978
,
Kinematic Geometry of Mechanisms
,
Cambridge University
,
Cambridge, MA
.
33.
Phillips
,
J.
,
1990
,
Freedom in Machinery: Volume 2 Screw Theory Exemplified
,
Cambridge University
,
Cambridge, MA
.
34.
Kumar
,
V.
,
Waldron
,
K. J.
,
Chrikjian
,
G.
, and
Lipkin
,
H.
,
2000
, “
Applications of Screw System Theory and Lie Theory to Spatial Kinematics: A Tutorial
,”
2000 ASME Design Engineering Technical Conferences
, Baltimore, MD, Sept. 10–13.
35.
Davidson
,
J. K.
, and
Hunt
,
K. H.
,
2004
,
Robots and Screw Theory: Applications of Kinematics and Statics to Robotics
,
Oxford University Press
,
New York
.
You do not currently have access to this content.