Fluid filled fiber reinforced elastomeric enclosures (FREEs) have been a popular choice for actuators in prosthetics and soft robots owing to their high power density and cost effective manufacturing. While a narrow class of FREEs known as McKibben's actuators have been extensively studied, there is a wide unexplored class that could be potentially used as actuators and soft structural members. This paper analyzes the mobility of generalized FREEs based on simple geometric relationships that result from the inextensibility of fibers and fluidic actuation. The analysis conducted can be classified into instantaneous kinematics and global or large deformation kinematics. Instantaneous kinematics reveals that the most general deformation pattern of the FREE is a screw motion about the axis of its cylinder, whose pitch is a function of fiber orientations. Furthermore, a set of fiber angles, which do not deform under volumetric actuation were identified as the locked manifold (LM). Global kinematic analysis revealed that every FREE continued to deform until its fiber configuration approached the LM. These insights were corroborated with finite element analysis (FEA) and testing for a small sample of FREE actuators.

Reference

1.
Howell
,
L. L.
,
2001
,
Axis and Circumference: The Cylindrical Shape of Plants and Animals
,
Harvard Press
,
Cambridge, MA
.
2.
Vogel
,
S.
,
2003
,
Comparative Biomechanics
,
Princeton University Press
,
Princeton, NJ
.
3.
Kelly
,
D.
,
1997
, “
Axial Orthogonal Fiber Reinforcement in the Penis of the Nine-Banded Armadillo (Dasypus Novemcinctus)
,”
J. Morphol.
,
233
(
3
), pp.
249
255
.10.1002/(SICI)1097-4687(199709)233:3<249::AID-JMOR4>3.0.CO;2-Z
4.
Kier
,
W. M.
,
1985
, “
The Musculature of Squid Arms and Tentacles: Ultrastructural Evidence for Functional Differences
,”
J. Morphol.
,
185
(
2
), pp.
223
239
.10.1002/jmor.1051850208
5.
Silk
,
W. K.
,
1989
, “
On the Curving and Twining of Stems
,”
Environ. Exp. Bot.
,
29
(
1
), pp.
95
109
.10.1016/0098-8472(89)90042-7
6.
Wainwright
,
S. A.
,
1982
,
Mechanical Design in Organisms
,
Princeton University Press
,
Princeton, NJ
.
7.
Gaylord
,
R. H.
,
1958
, “
Fluid Actuated Motor System and Stroking Device
,” U.S. Patent No. 2,844,126.
8.
Klute
,
G.
,
Czerniecki
,
J.
, and
Hannaford
,
B.
,
1999
, “
McKibben Artificial Muscles: Pneumatic Actuators With Biomechanical Intelligence
,”
1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
),
Atlanta, GA
, Sept. 19–23, pp.
221
226
.10.1109/AIM.1999.803170
9.
Peel
,
L. D.
,
Muratalla
,
L.
,
Baur
,
J.
, and
Foster
,
D.
,
2011
, “
The Effect of Scale on Fluid-Filled Flexible Composite Actuators
,”
ASME
Paper No. SMASIS2011-4934.10.1115/SMASIS2011-4934
10.
Peel
,
L. D.
, and
Ball
,
C.
,
2010
, “
Fabrication and Testing of a Simple ‘Bionic Arm' Demonstrator
,”
ASME
Paper No. SMASIS2010-3658.10.1115/SMASIS2010-3658
11.
Aschenbeck
,
K.
,
Kern
,
N.
,
Bachmann
,
R.
, and
Quinn
,
R.
,
2006
, “
Design of a Quadruped Robot Driven by Air Muscles
,”
First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
(
BioRob 2006
),
Pisa, Italy
, Feb. 20–22, pp.
875
880
.10.1109/BIOROB.2006.1639201
12.
McMahan
,
W.
,
Chitrakaran
,
V.
,
Csencsits
,
M.
,
Dawson
,
D.
,
Walker
,
I.
,
Jones
,
B.
,
Pritts
,
M.
,
Dienno
,
D.
,
Grissom
,
M.
, and
Rahn
,
C.
,
2006
, “
Field Trials and Testing of the OctArm Continuum Manipulator
,”
IEEE International Conference on Robotics and Automation
(
ICRA 2006
),
Orlando, FL
, May 15–19, pp.
2336
2341
.10.1109/ROBOT.2006.1642051
13.
Chou
,
C.-P.
, and
Hannaford
,
B.
,
1996
, “
Measurement and Modeling of McKibben Pneumatic Artificial Muscles
,”
IEEE Trans. Rob. Autom.
,
12
(
1
), pp.
90
102
.10.1109/70.481753
14.
Liu
,
W.
, and
Rahn
,
C. R.
,
2003
, “
Fiber-Reinforced Membrane Models of McKibben Actuators
,”
ASME J. Appl. Mech.
,
70
(
6
), pp.
853
859
.10.1115/1.1630812
15.
Trivedi
,
D.
,
Lotfi
,
A.
, and
Rahn
,
C.
,
2008
, “
Geometrically Exact Models for Soft Robotic Manipulators
,”
IEEE Trans. Rob.
,
24
(
4
), pp.
773
780
.10.1109/TRO.2008.924923
16.
Kothera
,
C. S.
,
Jangid
,
M.
,
Sirohi
,
J.
, and
Wereley
,
N. M.
,
2009
, “
Experimental Characterization and Static Modeling of McKibben Actuators
,”
ASME J. Mech. Des.
,
131
(
9
), p.
091010
.10.1115/1.3158982
17.
Philen
,
M.
,
Shan
,
Y.
,
Prakash
,
P.
,
Wang
,
K.
,
Rahn
,
C.
,
Zydney
,
A.
, and
Bakis
,
C.
,
2007
, “
Fibrillar Network Adaptive Structure With Ion-Transport Actuation
,”
J. Intell. Mater. Syst. Struct.
,
18
(
4
), pp.
323
334
.10.1177/1045389X06066097tions
18.
Bishop-Moser
,
J.
,
Krishnan
,
G.
,
Kim
,
C.
, and
Kota
,
S.
,
2012
, “
Kinematic Synthesis of Fiber Reinforced Soft Actuators in Parallel Combinations
,”
ASME
Paper No. DETC2012-71261.10.1115/DETC2012-71261
19.
Bishop-Moser
,
J.
,
Krishnan
,
G.
,
Kim
,
C.
, and
Kota
,
S.
,
2012
, “
Design of Soft Robotic Actuators Using Fluid-Filled Fiber-Reinforced Elastomeric Enclosures in Parallel Combinations
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
),
Vilamoura-Algarve
,
Portugal
, Oct. 7–12, pp.
4264
4269
.10.1109/IROS.2012.6385966
20.
Peel
,
L.
,
1998
, “
Fabrication and Mechanics of Fiber-Reinforced Elastomers
,” Ph.D. thesis, Brigham Young University, Provo, UT.
21.
Krishnan
,
G.
,
Bishop-Moser
,
J.
,
Kim
,
C.
, and
Kota
,
S.
,
2012
, “
Evaluating Mobility Behavior of Fluid Filled Fiber-Reinforced Elastomeric Enclosures
,”
ASME
Paper No. DETC2012-71278.10.1115/DETC2012-71278
22.
Bishop-Moser
,
J.
,
Krishnan
,
G.
, and
Kota
,
S.
,
2013
, “
Force and Hydraulic Displacement Amplification of Fiber Reinforced Soft Actuators
,”
ASME
Paper No. DETC2013-12657.10.1115/DETC2013-12657
23.
Bishop-Moser
,
J.
,
Krishnan
,
G.
,
Kim
,
C.
, and
Kota
,
S.
, 2013, “
Force and Moment Generation of Fiber-Reinforced Pneumatic Soft Actuators
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Tokyo, Nov. 3–7, pp. 4460–4465.10.1109/IROS.2013.6696997
You do not currently have access to this content.