This paper describes a new design that improves several aspects of the mechanically adjustable compliance and controllable equilibrium position actuator (MACCEPA). The proposed design avoids premature wear and attachment issues found in the cable transmission used in previous MACCEPA designs and allows the use of high-performance compact compression springs. The mechanical configuration of the actuator provides an adjustable stiffness with a nonlinear stiffening output torque. The output position of the actuator and its global stiffness are independent from each other. In this work, we provide a mathematical description of the actuation principle along with an experimental verification of its performance in a powered ankle–foot prosthesis. This work is part of the CYBERLEGs project funded by the European Commissions 7th Framework Programme.

References

References
1.
Dollar
,
A. M.
, and
Herr
,
H.
,
2008
, “
Lower Extremity Exoskeletons and Active Orthoses: Challenges and State of the Art
,”
IEEE Trans. Rob.
,
24
(
1
), pp.
144
158
.
2.
Versluys
,
R.
,
Beyl
,
P.
,
Van Damme
,
M.
,
Desomer
,
A.
,
Van Ham
,
R.
, and
Lefeber
,
D.
,
2009
, “
Prosthetic Feet: State-of-the-Art Review and the Importance of Mimicking Human Ankle-Foot Biomechanics
,”
Disability Rehabil.: Assistive Technol.
,
4
(
2
), pp.
65
75
.
3.
Pratt
,
G.
, and
Williamson
,
M.
,
1995
, “
Series Elastic Actuators
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Pittsburgh, PA, Aug. 5–9, pp.
399
406
.
4.
Albu-Schäffer
,
A.
,
Eiberger
,
O.
,
Grebenstein
,
M.
,
Haddadin
,
S.
,
Ott
,
C.
,
Wimbock
,
T.
,
Wolf
,
S.
, and
Hirzinger
,
G.
,
2008
, “
Soft Robotics
,”
IEEE Rob. Autom. Mag.
,
15
(
3
), pp.
20
30
.
5.
Paluska
,
D.
, and
Herr
,
H.
,
2006
, “
The Effect of Series Elasticity on Actuator Power and Work Output: Implications for Robotic and Prosthetic Joint Design
,”
Rob. Auton. Syst.
,
54
(
8
), pp.
667
673
.
6.
Au
,
S.
,
Berniker
,
M.
, and
Herr
,
H.
,
2008
, “
Powered Ankle-Foot Prosthesis to Assist Level-Ground and Stair Descent Gaits
,”
Neural Networks
,
21
(
4
), pp.
654
666
.
7.
Hitt
,
J.
,
Sugar
,
T.
,
Holgate
,
M.
,
Bellman
,
R.
, and
Hollander
,
K.
,
2009
, “
Robotic Transtibial Prosthesis With Biomechanical Energy Regeneration
,”
Ind. Rob.
,
36
(
5
), pp.
441
447
.
8.
Eilenberg
,
M. F.
,
Geyer
,
H.
, and
Herr
,
H.
,
2010
, “
Control of a Powered Ankle-Foot Prosthesis Based on a Neuromuscular Model
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
18
(
2
), pp.
164
173
.
9.
Cherelle
,
P.
,
Grosu
,
V.
,
Matthys
,
A.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2014
, “
Design and Validation of the Ankle Mimicking Prosthetic (AMP-)Foot 2.0
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
22
(
1
), pp.
138
148
.
10.
BiOM
,
2014
, “
BiOM Ankle System
,” BiOM Personal Bionics, Bedford, MA, accessed Feb. 21, 2014, http://www.biom.com/
11.
SpringActive
,
2014
, “ODYSSEY and JACKSPRING,” SpringActive Inc., Tempe, AZ, accessed Feb. 21, 2014, http://www.springactive.com/
12.
Van Ham
,
R.
,
Sugar
,
T. G.
,
Vanderborght
,
B.
,
Hollander
,
K. W.
, and
Lefeber
,
D.
,
2009
, “
Compliant Actuator Designs: Review of Actuators With Passive Adjustable Compliance/Controllable Stiffness for Robotic Applications
,”
IEEE Rob. Autom. Mag.
,
16
(
3
), pp.
81
94
.
13.
Vanderborght
,
B.
,
Albu-Schaeffer
,
A.
,
Bicchi
,
A.
,
Burdet
,
E.
,
Caldwell
,
D.
,
Carloni
,
R.
,
Catalano
,
M.
,
Eiberger
,
O.
,
Friedl
,
W.
,
Ganesh
,
G.
,
Garabini
,
M.
,
Grebenstein
,
M.
,
Grioli
,
G.
,
Haddadin
,
S.
,
Hoppner
,
H.
,
Jafari
,
A.
,
Laffranchi
,
M.
,
Lefeber
,
D.
,
Petit
,
F.
,
Stramigioli
,
S.
,
Tsagarakis
,
N.
,
Van Damme
,
M.
,
Van Ham
,
R.
,
Visser
,
L.
, and
Wolf
,
S.
,
2013
, “
Variable Impedance Actuators: A Review
,”
Rob. Auton. Syst.
,
61
(
12
), pp.
1601
1614
.
14.
Tonietti
,
G.
,
Schiavi
,
R.
, and
Bicchi
,
A.
,
2005
, “
Design and Control of a Variable Stiffness Actuator for Safe and Fast Physical Human/Robot Interaction
,”
IEEE International Conference on Robotics and Automation
(
ICRA 2005
), Barcelona, Spain, Apr. 18–22, pp.
526
531
.
15.
Wolf
,
S.
, and
Hirzinger
,
G.
,
2008
, “
A New Variable Stiffness Design: Matching the Requirements of the Next Robot Generation
,”
IEEE International Conference on Robotics and Automation
(
ICRA 2008
), Pasadena, CA, May 19–23, pp.
1741
1746
.
16.
Jafari
,
N.
,
Tsagarakis
,
N.
,
Vanderborght
,
B.
, and
Caldwell
,
D.
,
2010
, “
A Novel Actuator With Adjustable Stiffness (AwAS)
,”
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Taipei, Taiwan, Oct. 18–22, pp.
4201
4206
.
17.
Jafari
,
N.
,
Tsagarakis
,
N.
, and
Caldwell
,
D.
,
2011
, “
AwAS-II: A New Actuator With Adjustable Stiffness Based on the Novel Principle of Adaptable Pivot Point and Variable Lever Ratio
,”
2011 IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghei, China, May 9–13, pp.
4638
4643
.
18.
Van Ham
,
R.
,
Vanderborght
,
B.
,
Van Damme
,
M.
,
Verrelst
,
B.
, and
Lefeber
,
D.
,
2007
, “
MACCEPA, the Mechanically Adjustable Compliance and Controllable Equilibrium Position Actuator: Design and Implementation in a Biped Robot
,”
Rob. Auton. Syst.
,
55
(
10
), pp.
761
768
.
19.
Vanderniepen
,
I.
,
Van Ham
,
R.
,
Van Damme
,
M.
, and
Lefeber
,
D.
,
2008
, “
Design of a Powered Elbow Orthosis for Orthopaedic Rehabilitation Using Compliant Actuation
,”
2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
(
BioRob 2008
), Scottsdale, AZ, Oct. 19–22, pp.
801
806
.
20.
Cherelle
,
P.
,
Grosu
,
V.
,
Beyl
,
P.
,
Matthys
,
A.
,
Van Ham
,
R.
,
Van Damme
,
M.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2010
, “
The MACCEPA Actuation System as Torque Actuator in the Gait Rehabilitation Robot ALTACRO
,”
3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics
(
BioRob
), Tokyo, Japan, Sept. 26–29, pp.
27
32
.
21.
Vanderborght
,
B.
,
Van Ham
,
R.
,
Lefeber
,
D.
,
Sugar
,
T.
, and
Hollander
,
K.
,
2009
, “
Comparison of Mechanical Design and Energy Consumption of Adaptable, Passive-Compliant Actuators
,”
Int. J. Rob. Res.
,
28
(
1
), pp.
90
103
.
22.
Versluys
,
R.
,
Matthys
,
A.
,
Van Ham
,
R.
,
Vanderniepen
,
I.
, and
Lefeber
,
D.
,
2009
, “
Powered Ankle-Foot System That Mimics Intact Human Ankle Behavior: Proposal of a New Concept
,”
11th IEEE International Conference on Rehabilitation Robotics
(
ICORR 2009
), Kyoto, Japan, June 23–26, pp.
658
662
.
23.
Cherelle
,
P.
,
Mathijssen
,
G.
,
Wang
,
Q.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2014
, “
Advances in Propulsive Bionic Feet and Their Actuation Principles
,”
Adv. Mech. Eng.
,
2014
, p. 984046.
24.
Vanderborght
,
B.
,
Tasagarakis
,
N. G.
,
Van Ham
,
R.
,
Thorson
,
I.
, and
Caldwell
,
D. G.
,
2011
, “
MACCEPA 2.0: Compliant Actuator Used for Energy Efficient Hopping Robot Chobino1D
,”
Auton. Rob.
,
31
(
1
), pp.
55
65
.
25.
CYBERLEGs Consortium
,
2014
, “
The CYBERLEGs Project
,” The Cybernetic Lowerlimb Cognitive Orthoprosthesis, European Commission 7th Framework ProgrammeFP7-ICT-287894, accessed Feb. 21, 2014, http://www.cyberlegs.eu/
26.
Salsich
,
G. B.
,
Mueller
,
M. J.
, and
Sahrmann
,
S. A.
,
2000
, “
Passive Ankle Stiffness in Subjects With Diabetes and Peripheral Neuropathy Versus an Age-Matched Comparison Group
,”
Phys. Ther.
,
80
(
4
), pp.
352
362
.
27.
Winter
,
D. A.
,
1991
,
The Biomechanics and Motor Control of Human Gait
,
University of Waterloo Press
,
Waterloo, ON, Canada
.
You do not currently have access to this content.