This article presents a new spatial mechanism with single degree of freedom (DOF) for three-dimensional path generation. The path can be defined by prescribing at most seven precision points. The moving platform of the mechanism is supported by a U-R (universal-revolute) leg and two S–S (spherical–spherical) legs. The driving unit is the first axis of the universal pair. The U-R leg is synthesized first with the problem of order defects being considered. Precision points then lead to prescribed poses of the moving platform. Two S–S legs are then synthesized to meet these poses. This spatial mechanism with a given input is analogous to a planar kinematic chain so that all possible configurations of the spatial mechanism can be constructed. A strategy consisting of three stages for evaluating branch defects is developed with the aid of the characteristic of double configurations and the technique of coding three constituent four-bar linkages. Two numerical examples are presented to illustrate the design, the evaluation of defects, and the performance of the mechanism.

References

References
1.
Suh
,
C. S.
, and
Radcliffe
,
C. W.
,
1978
,
Kinematics and Mechanisms Design
, Wiley, New York.
2.
Russell
,
K.
, and
Shen
,
J.
,
2011
, “
Planar Four-Bar Motion and Path Generation With Order and Branching Conditions
,”
J. Adv. Mech. Des., Syst., Manuf.
,
5
(
4
), pp.
264
273
.10.1299/jamdsm.5.264
3.
Lin
,
W. Y.
,
2010
, “
A GA-DE Hybrid Evolutionary Algorithm for Path Synthesis of Four-Bar Linkage
,”
Mech. Mach. Theory
,
45
(
8
), pp.
1096
1107
.10.1016/j.mechmachtheory.2010.03.011
4.
Peñuñuri
,
F.
,
Peón-Escalante
,
R.
,
Villanueva
,
C.
, and
Pech-Oy
,
D.
,
2011
, “
Synthesis of Mechanisms for Single and Hybrid Tasks Using Differential Evolution
,”
Mech. Mach. Theory
,
46
(
10
), pp.
1335
1349
.10.1016/j.mechmachtheory.2011.05.013
5.
Matekar
,
S. B.
, and
Gogate
,
G. R.
,
2012
, “
Optimum Synthesis of Path Generating Four-Bar Mechanisms Using Differential Evolution and a Modified Error Function
,”
Mech. Mach. Theory
,
52
, pp.
158
179
.10.1016/j.mechmachtheory.2012.01.017
6.
Cabrera
,
J. A.
,
Ortiz
,
A.
,
Nadal
,
F.
, and
Castillo
,
J. J.
,
2011
, “
An Evolutionary Algorithm for Path Synthesis of Mechanisms
,”
Mech. Mach. Theory
,
46
(
2
), pp.
127
141
.10.1016/j.mechmachtheory.2010.10.003
7.
Zhou
,
H.
, and
Cheung
,
H. M.
,
2002
, “
Analysis and Optimal Synthesis of Adjustable Linkages for Path Generation
,”
Mechatronics
,
12
(
7
), pp.
949
961
.10.1016/S0957-4158(01)00034-4
8.
Zhou
,
H.
, and
Ting
,
K. L.
,
2002
, “
Adjustable Slider–Crank Linkages for Multiple Path Generation
,”
Mech. Mach. Theory
,
37
(
5
), pp.
499
509
.10.1016/S0094-114X(02)00008-3
9.
Russell
,
K.
, and
Sodhi
,
R. S.
,
2005
, “
On the Design of Slider-Crank Mechanisms Part II: Multi-Phase Path and Function Generation
,”
Mech. Mach. Theory
,
40
(
3
), pp.
301
317
.10.1016/j.mechmachtheory.2004.07.010
10.
Peng
,
C.
, and
Sodhi
,
R. S.
,
2010
, “
Optimal Synthesis of Adjustable Mechanisms Generating Multi-Phase Approximate Paths
,”
Mech. Mach. Theory
,
45
(
7
), pp.
989
996
.10.1016/j.mechmachtheory.2010.02.005
11.
Chiang
,
C. H.
,
2000
,
Kinematics of Spherical Mechanisms
,
Krieger Publishing Company
, Malabar, FL.
12.
Peñuñuri
,
F.
,
Peón-Escalante
,
R.
,
Villanueva
,
C.
, and
Cruz-Villar
,
C. A.
,
2012
, “
Synthesis of Spherical 4R Mechanism for Path Generation Using Differential Evolution
,”
Mech. Mach. Theory
,
57
, pp.
62
70
.10.1016/j.mechmachtheory.2012.07.003
13.
Chu
,
J.
, and
Sun
,
J.
,
2010
, “
Numerical Atlas Method for Path Generation of Spherical Four-Bar Mechanism
,”
Mech. Mach. Theory
,
45
(
6
), pp.
867
879
.10.1016/j.mechmachtheory.2009.12.005
14.
Mullineux
,
G.
,
2011
, “
Atlas of Spherical Four-Bar Mechanisms
,”
Mech. Mach. Theory
,
46
(
11
), pp.
1811
1823
.10.1016/j.mechmachtheory.2011.06.001
15.
Premkumar
,
P.
, and
Kramer
,
S.
,
1990
, “
Synthesis of Multi-Loop Spatial Mechanisms by Iterative Analysis: The RSSR-SS Path Generator
,”
ASME J. Mech. Des.
,
112
(
1
), pp.
69
73
.10.1115/1.2912580
16.
Chu
,
J. K.
, and
Sun
,
J. W.
,
2010
, “
A New Approach to Dimension Synthesis of Spatial Four-Bar Linkage Through Numerical Atlas Method
,”
ASME J. Mech. Rob.
,
2
(
4
), p.
041004
.10.1115/1.4001774
17.
Marble
,
S. D.
, and
Pennock
,
G. R.
,
2000
, “
Algebraic-Geometric Properties of the Coupler Curves of the RCCC Spatial Four-Bar Mechanism
,”
Mech. Mach. Theory
,
35
(
5
), pp.
675
693
.10.1016/S0094-114X(99)00039-7
18.
Parikian
,
T. F.
,
1997
, “
Multi-Generation of Coupler Curves of Spatial Linkages
,”
Mech. Mach. Theory
,
32
(
1
), pp.
103
110
.10.1016/0094-114X(96)00021-3
19.
Huang
,
C. T.
, and
Lai
,
C. L.
,
2012
, “
Spatial Generalizations of Planar Point-Angle and Path Generation Problems
,”
ASME J. Mech. Rob.
,
4
(
3
), p.
031010
.10.1115/1.4006742
20.
Krovi
,
V.
,
Ananthasuresh
,
G. K.
, and
Kumar
,
V.
,
2001
, “
Kinematic Synthesis of Spatial R-R Dyads for Path Following With Applications to Coupled Serial Chain Mechanisms
,”
ASME J. Mech. Des.
,
123
(
3
), pp.
359
366
.10.1115/1.1370977
21.
Craig
,
J. J.
,
2005
,
Introduction to Robotics
,
Prentice Hall
, Upper Saddle River, NJ.
22.
Chung
,
W. Y.
,
2011
, “
Hybrid Platform Driven by Low DOF Mechanisms
,” 13th World Congress in Mechanism and Machine Science, Guanajuato, Mexico, June 19–23, Paper No. A11_311.
23.
Chiang
,
C. H.
,
2000
,
Kinematics and Design of Planar Mechanisms
,
Krieger Publishing Company
, Malabar, FL.
24.
Chung
,
W. Y.
,
2005
, “
The Position Analysis of Assur Kinematic Chain With Five Links
,”
Mech. Mach. Theory
,
40
(
9
), pp.
1015
1029
.10.1016/j.mechmachtheory.2004.12.016
25.
Ting
,
K. L.
, and
Dou
,
X.
,
1996
, “
Classification and Branch Identification of Stephenson Six-Bar Chains
,”
Mech. Mach. Theory
,
31
(
3
), pp.
283
295
.10.1016/0094-114X(95)00075-A
26.
Yan
,
H. S.
, and
Wu
,
L. I.
,
1988
, “
The Stationary Configurations of Planar Six-Bar Kinematic Chains
,”
Mech. Mach. Theory
,
23
(
4
), pp.
287
293
.10.1016/0094-114X(88)90021-3
You do not currently have access to this content.