In this paper, we study five aspects of design for wheeled inverted pendulum (WIP) platforms with the aim of understanding the effect of design choices on the balancing performance. First, we demonstrate analytically and experimentally the effect of soft visco-elastic tires on a WIP showing that the use of soft tires enhances balancing performance. Next, we study the effect of pitch rate and wheel velocity filters on WIP performance and make suggestions for design of filters. We then describe a self-tuning limit cycle compensation algorithm and experimentally verify its operation. Subsequently, we present an analytical simulation to study the effects of torque and velocity control of WIP motors and describe the tradeoffs between the control methodologies in various application scenarios. Finally, to understand if motor gearing can be an efficient alternative to bigger and more expensive direct drive motors, we analyze the effect of motor gearing on WIP dynamics. Our aim is to describe electromechanical design tradeoffs appropriately, so a WIP can be designed and constructed with minimal iterative experimentation.

References

References
1.
Segway, Inc., Bedford, NH
, http://www.segway.com/
2.
Nguyen
,
H. G.
,
Morrell
,
A. J.
,
Mullens
,
B. K.
,
Burmeister
,
A. A.
,
Miles
,
S.
,
Farrington
,
C. N.
,
Thomas
,
A. K.
, and
Gage
,
D. W.
,
2004
. “
Segway Robotic Mobility Platform
,” SPIE Mobile Robots XVII, Philadelphia, PA, October 27–28.
3.
Nakajima
,
R.
,
Tsubouchi
,
T.
,
Yuta
,
S.
, and
Koyanagi
,
E.
,
1997
, “
A Development of a New Mechanism of an Autonomous Unicycle
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS'97
), Grenoble, France, Sept. 7–11, pp.
906
912
. http://dx.doi.org/10.1109/IROS.1997.655117
4.
Ha
,
Y.
, and
Yuta
,
S.
,
1994
, “
Trajectory Tracking Control for Navigation of Self-Contained Mobile Inverse Pendulum
,” IEEE/RSJ/GI International Conference on Intelligent Robots and Systems (
IROS'94
), “Advanced Robotic Systems and the Real World,” Munich, Germany, Sept. 12–16, pp.
1875
1882
. http://dx.doi.org/10.1109/IROS.1994.407604
5.
Grasser
,
F.
,
D'Arrigo
,
A.
,
Colombi
,
S.
, and
Rufer
,
A.
,
2002
, “
Joe: A Mobile, Inverted Pendulum
,”
IEEE Trans Ind. Electron.
,
49
(
1
), pp.
107
114
.10.1109/41.982254
6.
Baloh
,
M.
, and
Parent
,
M.
,
2003
, “
Modeling and Model Verification of an Intelligent Self-Balancing Two-Wheeled Vehicle for an Autonomous Urban Transportation System
,”
International Conference on Computational Intelligence, Robotics, and Autonomous Systems
. (CIRAS2003), Singapore, Taiwan, Dec. 15–18.
7.
Akesson
,
J.
,
Blomdell
,
A.
, and
Braun
,
R.
,
2005
, “
Design and Control of YAIP—An Inverted Pendulum on Two Wheels Robot
,” Computer Aided Control System Design, IEEE International Conference on Control Applications and IEEE International Symposium on Intelligent Control (
CADSD-CCA-ISIC
), Munich, Germany, Oct. 4–6, pp.
2178
2183
. http://dx.doi.org/10.1109/CACSD-CCA-ISIC.2006.4776978
8.
Lauwers
,
T.
,
Kantor
,
G.
, and
Hollis
,
R.
,
2005
, “
One is Enough
,”
12th International Symposium of Robotics Research
, San Francisco, Oct. 12–15, pp.
12
15
.
9.
Lauwers
,
T. B.
,
Kantor
,
G. A.
, and
Hollis
,
R. L.
,
2006
, “
A Dynamically Stable Single-Wheeled Mobile Robot With Inverse Mouse-Ball Drive
,”
IEEE International Conference on Robotics and Automation
, (
ICRA 2006
), Orlando, FL, May 15–19, pp.
2884
2889
.http://dx.doi.org/10.1109/ROBOT.2006.1642139
10.
Nagarajan
,
U.
,
Kantor
,
G.
, and
Hollis
,
R. L.
,
2009
, “
Human–Robot Physical Interaction With Dynamically Stable Mobile Robots
,”
4th ACM/IEEE International Conference on Human Robot Interaction (HRI 2009)
, La Jolla, CA, Mar. 11–13, pp.
281
282
.
11.
Yang
,
C.
,
Li
,
Z.
, and
Li
,
J.
,
2013
, “
Trajectory Planning and Optimized Adaptive Control for a Class of Wheeled Inverted Pendulum Vehicle Models
,”
IEEE Trans. Cybern.
,
43
(
1
), pp.
24
36
.10.1109/TSMCB.2012.2198813
12.
Li
,
Z.
, and
Yang
,
C.
,
2012
, “
Neural-Adaptive Output Feedback Control of a Class of Transportation Vehicles Based on Wheeled Inverted Pendulum Models
,”
IEEE Trans. Control Systems Technology
,
20
(
6
), pp.
1583
1591
.10.1109/TCST.2011.2168224
13.
Li
,
Z.
, and
Zhang
,
Y.
,
2010
, “
Robust Adaptive Motion/Force Control for Wheeled Inverted Pendulums
,”
Automatica
,
46
(
8
), pp.
1346
1353
.10.1016/j.automatica.2010.05.015
14.
Li
,
Z.
,
Zhang
,
Y.
, and
Yang
,
Y.
,
2010
, “
Support Vector Machine Optimal Control for Mobile Wheeled Inverted Pendulums With Unmodelled Dynamics
,”
Neurocomputing
,
73
(
13–15
), pp.
2773
2782
.10.1016/j.neucom.2010.04.009
15.
Fraggstedt
,
M.
,
2008
, “
Vibrations, Damping and Power Dissipation in Car Tyres
,” Ph.D. thesis, Marcus Wallenberg Laboratory, Royal Institute of Technology, Stockholm, Sweden.
16.
Stutts
,
D. S.
, and
Soedel
,
W.
,
1992
, “
A Simplified Dynamic Model of the Effect of Internal Damping on the Rolling Resistance in Pneumatic Tires
,”
J. Sound Vib.
,
155
(
1
), pp.
153
164
.10.1016/0022-460X(92)90652-E
17.
Kim
,
S.-J.
, and
Savkoor
,
A. R.
,
1997
, “
The Contact Problem of In-Plane Rolling of Tires on a Flat Road
,”
Veh. Syst. Dyn.
,
27
(Suppl. 001
), pp.
189
206
.10.1080/00423119708969654
18.
Clark
,
S. K.
, and
U.S. National Highway Traffic Safety Administration
,
1981
, “
Mechanics of Pneumatic Tires
,”
U.S. Department of Transportation, National Highway Traffic Safety Administration
, Washington, DC, DOT HS
805
952
, pp.
592
594
.
19.
Kauzlarich
,
J. J.
, and
Thacker
,
J. G.
,
1985
, “
Wheelchair Tire Rolling Resistance and Fatigue
,”
J. Rehabil. Res. Dev.
,
22
(
3
), pp.
25
41
.10.1682/JRRD.1985.07.0025
20.
Vasudevan
,
H.
,
Dollar
,
A. M.
, and
Morrell
,
J. B.
,
2013
, “
Energy-Based Limit Cycle Compensation for Dynamically Balancing Wheeled Inverted Pendulum Machines
,”
ASME
Paper No. DSCC2013-3843.10.1115/DSCC2013-3843
21.
Olsson
,
H.
,
1996
, “
Control Systems With Friction
,” Institutionen för reglerteknik, Lunds tekniska högskola. Department of Automatic Control, Lund Institute of Technology, Lund, Sweden.
22.
Campbell
,
S. A.
,
Crawford
,
S.
, and
Morris
,
K.
,
2008
, “
Friction and the Inverted Pendulum Stabilization Problem
,”
ASME J. Dyn. Syst., Meas., Control
,
130
(
5
), p.
054502
.10.1115/1.2957631
23.
Aimar
,
R.
,
Indri
,
M.
,
Stomboli
,
T.
, and
Bona
,
B.
,
1995
, “
Experiments on Robust Friction Compensation: The Inverted Pendulum Case
,”
American Control Conference
, Seattle, WA, June 21–23, pp.
3303
3305
. http://dx.doi.org/10.1109/ACC.1995.532214
24.
Chang
,
L.-H.
, and
Lee
,
A.-C.
,
2007
, “
Design of Nonlinear Controller for Bi-Axial Inverted Pendulum System
,”
IET Control Theory Appl.,
1
(
4
), pp.
979
986
.10.1049/iet-cta:20060338
25.
Ostertag
,
E.
, and
Carvalho-Ostertag
,
M. J.
,
1993
, “
Fuzzy Control of an Inverted Pendulum With Fuzzy Compensation of Friction Forces
,”
Int. J. Syst. Sci.
,
24
(
10
), pp.
1915
1921
.10.1080/00207729308949603
26.
Medrano-Cersa
,
G.
,
1999
, “
Robust Computer Control of an Inverted Pendulum
,”
IEEE Control Syst.
,
19
(
3
), pp.
58
67
.10.1109/37.768541
27.
Hannaford
,
B.
, and
Ryu
,
J.-H.
,
2002
, “
Time-Domain Passivity Control of Haptic Interfaces
,”
IEEE Trans. Rob. Autom.
,
18
(
1
), pp.
1
10
.10.1109/70.988969
28.
Pathak
,
K.
,
Franch
,
J.
, and
Agrawal
,
S.
,
2005
, “
Velocity and Position Control of a Wheeled Inverted Pendulum by Partial Feedback Linearization
,”
IEEE Trans. Rob.
,
21
(
3
), pp.
505
513
.10.1109/TRO.2004.840905
29.
Li
,
Z.
,
Yang
,
C.
, and
Fan
,
L.
,
2013
,
Advanced Control of Wheeled Inverted Pendulum Systems
,
Springer-Verlag
,
London
.
You do not currently have access to this content.