A parallel kinematic machine (PKM) topology can only give its best performance when its geometrical parameters are optimized. In this paper, dimensional synthesis of a newly developed PKM is presented for the first time. An optimization method is developed with the objective to maximize both workspace volume and global dexterity of the PKM. Results show that the method can effectively identify design parameter changes under different weighted objectives. The PKM with optimized dimensions has a large workspace to footprint ratio and a large well-conditioned workspace, hence justifies its suitability for large volume machining.

References

References
1.
Summers
,
M.
,
2005
, “
Robot Capability Test and Development of Industrial Robot Positioning System for the Aerospace Industry
,”
SAE
Aerospace Manufacturing and Automated Fastening Conference
, Paper No. 2005-01-3336.10.4271/2005-01-3336
2.
Weck
,
M.
, and
Staimer
,
D.
,
2002
, “
Parallel Kinematic Machine Tools—Current State and Future Potentials
,”
CIRP Ann.—Manuf. Technol.
,
51
(
2
), pp.
671
683
.10.1016/S0007-8506(07)61706-5
3.
Rehsteiner
,
F.
,
Neugebauer
,
R.
,
Spiewak
,
S.
, and
Wieland
,
F.
,
1999
, “
Putting Parallel Kinematics Machines (PKM) to Productive Work
,”
CIRP Ann.—Manuf. Technol.
,
48
(
1
), pp.
345
350
.10.1016/S0007-8506(07)63199-0
4.
Neumann
,
K.
,
1988
, “
Robot
,” U.S. patent US4732525.
5.
Tonshoff
,
H. K
, and
Grendel
,
H.
,
1999
, “
A Systematic Comparison of Parallel Kinematics
,” Parallel Kinematic Machines, Springer, London, pp. 295–312.
6.
Neumann
,
K.
,
2006
, “
The Key to Aerospace Automation
,”
SAE
Aerospace Manufacturing and Automated Fastening Conference and Exhibition
, Paper No. 2006-01-3144.10.4271/2006-01-3144
7.
Bi
,
Z.
, and
Jin
,
Y.
,
2011
, “
Kinematic Modeling of Exechon Parallel Kinematic Machine
,”
Rob. Comput. Integr. Manuf.
,
27
(
1
), pp.
186
193
.10.1016/j.rcim.2010.07.006
8.
Eastwood
,
S.
,
2004
, “
Error Mapping and Analysis for Hybrid Parallel Kinematic Machines
,” Ph.D. thesis,
University of Nottingham
,
Nottingham, UK
.
9.
Liu
,
H.
,
Huang
,
T.
,
Zhao
,
X.
,
Mei
,
J.
, and
Chetwynd
,
D.
,
2007
, “
Optimal Design of the Trivariant Robot to Achieve a Nearly Axial Symmetry of Kinematic Performance
,”
Mech. Mach. Theory
,
42
(
12
), pp.
1643
1652
.10.1016/j.mechmachtheory.2006.12.001
10.
McToal
,
P.
,
Jin
,
Y.
,
Higgins
,
C.
, and
Brooks
,
H.
,
2010
, “
ALCAS Wing Box Root End Machining Solution—A Parallel Kinematic Approach
,”
SAE 2010 Aerospace Manufacturing and Automated Fastening Conference and Exhibition
, Wichita, KS, Sept. 28–30, Paper No. 10AMAF-0125.
11.
Jin
,
Y.
,
Bi
,
Z.
,
Gibson
,
R.
,
McToal
,
P.
,
Morgan
,
M.
,
McClory
,
C.
, and
Higgins
,
C.
,
2011
, “
Kinematic Analysis of a New Over-Constrained Parallel Kinematic Machine
,”
13th World Congress in Mechanism and Machine Science
, Guanajuato, Mexico, June 19–25, pp.
A7
282
.
12.
Gosselin
,
C.
, and
Angeles
,
J.
,
1991
, “
A Global Performance Index for the Kinematic Optimization of Robotic Manipulators
,”
ASME J. Mech. Des.
,
113
(
3
), pp.
220
226
.10.1115/1.2912772
13.
Monsarrat
,
B.
, and
Gosselin
,
C.
,
2003
, “
Workspace Analysis and Optimal Design of a 3-Leg 6-DOF Parallel Platform Mechanism
,”
IEEE Trans. Rob. Autom.
,
19
(
6
), pp.
954
966
.10.1109/TRA.2003.819603
14.
Castelli
,
G.
,
Ottaviano
,
E.
, and
Ceccarelli
,
M.
,
2008
, “
A Fairly General Algorithm to Evaluate Workspace Characteristics of Serial and Parallel Manipulators
,”
Mech. Des. Struct. Mach.
,
36
(
1
), pp.
14
33
.10.1080/15397730701729478
15.
Jin
,
Y.
,
Chen
,
I.
, and
Yang
,
G.
,
2006
, “
Kinematic Design of a 6-DOF Parallel Manipulator With Decoupled Translation and Rotation
,”
IEEE Trans. Rob.
,
22
(
3
), pp.
545
551
.10.1109/TRO.2006.870648
16.
Carbone
,
G.
,
Ottaviano
,
E.
, and
Ceccarelli
,
M.
,
2007
, “
An Optimum Design Procedure for Both Serial and Parallel Manipulators
,”
Proc. Inst. Mech. Eng.
, Part C,
221
(
7
), pp.
829
843
.10.1243/0954406JMES367
17.
Lou
,
Y.
,
Liu
,
G.
, and
Li
,
Z.
,
2008
, “
Randomized Optimal Design of Parallel Manipulators
,”
IEEE Trans. Autom. Sci. Eng.
,
5
(
2
), pp.
223
233
.10.1109/TASE.2007.909446
18.
Liu
,
X.
,
2006
, “
Optimal Kinematic Design of a Three Translational DOFs Parallel Manipulator
,”
Robotica
,
24
(
2
), pp.
239
250
.10.1017/S0263574705002079
19.
Liu
,
X.
, and
Wang
,
J.
,
2007
, “
A New Methodology for Optimal Kinematic Design of Parallel Mechanisms
,”
Mech. Mach. Theory
,
42
(
9
), pp.
1210
1224
.10.1016/j.mechmachtheory.2006.08.002
20.
Merlet
,
J.
,
2006
, “
Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
199
206
.10.1115/1.2121740
21.
Cardou
,
P.
,
Bouchard
,
S.
, and
Gosselin
,
C.
,
2010
, “
Kinematic-Sensitivity Indices for Dimensionally Nonhomogeneous Jacobian Matrices
,”
IEEE Trans. Rob.
,
26
(
1
), pp.
166
173
.10.1109/TRO.2009.2037252
22.
Liu
,
X.
, and
Gao
,
F.
,
2000
, “
Optimum Design of 3-DOF Spherical Parallel Manipulators With Respect to the Conditioning and Stiffness Indices
,”
Mech. Mach. Theory
,
35
(
9
), pp.
1257
1267
.10.1016/S0094-114X(99)00072-5
23.
Chablat
,
D.
, and
Wenger
,
P.
,
2003
, “
Architecture Optimization of a 3-DOF Translational Parallel Mechanism for Machining Applications, the Orthoglide
,”
IEEE Trans. Rob. Autom.
,
19
(
3
), pp.
403
410
.10.1109/TRA.2003.810242
24.
Huang
,
T.
,
Li
,
M.
,
Zhao
,
X.
,
Mei
,
J.
,
Whitehouse
,
D.
, and
Hu
,
S.
,
2005
, “
Conceptual Design and Dimensional Synthesis for a 3-DOF Module of the Trivariant—A Novel 5-DOF Reconfigurable Hybrid Robot
,”
IEEE Trans. Rob. Autom.
,
21
(
3
), pp.
449
456
.10.1109/TRO.2004.840908
25.
Li
,
Y.
, and
Xu
,
Q.
,
2006
, “
A New Approach to the Architecture Optimization of a General 3-PUU Translational Parallel Manipulator
,”
J. Intell. Rob. Syst.
,
46
(
1
), pp.
59
72
.10.1007/s10846-006-9044-6
26.
Pierrot
,
F.
,
Nabat
,
V.
,
Krut
,
S.
, and
Poignet
,
P.
,
2009
, “
Optimal Design of a 4-DOF Parallel Manipulator: From Academia to Industry
,”
IEEE Trans. Rob.
,
25
(
2
), pp.
213
224
.10.1109/TRO.2008.2011412
27.
Liu
,
H.
,
Huang
,
T.
,
Mei
,
J.
,
Zhao
,
X.
,
Chetwynd
,
D.
,
Li
,
M.
, and
Hu
,
S.
,
2007
, “
Kinematic Design of a 5-DOF Hybrid Robot With Large Workspace/Limb-Stroke Ratio
,”
ASME J. Mech. Des.
,
129
(
5
), pp.
530
537
.10.1115/1.2712220
28.
Ottaviano
,
E.
, and
Ceccarelli
,
M.
,
2002
, “
Optimal Design of Capaman (Cassino Parallel Manipulator) With a Specified Orientation Workspace
,”
Robotica
,
20
(
2
), pp.
159
166
.10.1017/S026357470100385X
29.
Jiang
,
Q.
, and
Gosselin
,
C.
,
2009
, “
Geometric Optimization of the MSSM Gough-Stewart Platform
,”
ASME J. Mech. Rob.
,
1
(
3
), p. 031006.10.1115/1.3147202
30.
Jiang
,
Q.
, and
Gosselin
,
C.
,
2010
, “
Geometric Synthesis of Planar 3-RPR Parallel Mechanisms for Singularity-Free Workspace
,” Trans. CSME,
33
(
4
), pp.
667
678
, available at: http://tcsme.org/Papers/Vol33/Vol33No4Paper11.pdf
31.
Altuzarra
,
O.
,
Pinto
,
C.
,
Sandru
,
B.
, and
Hernandez
,
A.
,
2011
, “
Optimal Dimensioning for Parallel Manipulators: Workspace, Dexterity, and Energy
,”
ASME J. Mech. Des.
,
133
(
4
), p.
041007
.10.1115/1.4003879
32.
Wang
,
J.
,
Wu
,
C.
, and
Liu
,
X.
,
2010
, “
Performance Evaluation of Parallel Manipulators: Motion/Force Transmissibility and Its Index
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1462
1476
.10.1016/j.mechmachtheory.2010.05.001
33.
Zoppi
,
M.
,
Zlatanov
,
D.
, and
Molfino
,
R.
,
2010
, “
Kinematic Analysis of the Exechon Tripod
,”
ASME
Paper No. DETC2010-28668.10.1115/DETC2010-28668
34.
Zlatanov
,
D.
,
Zoppi
,
M.
, and
Molfino
,
R.
,
2012
, “
Constraint and Singularity Analysis of the Exechon Tripod
,”
ASME
Paper No. DETC2012-71184.10.1115/DETC2012-71184
35.
Tandirci
,
M.
,
Angeles
,
J.
, and
Ranjbaran
,
F.
,
1992
, “
The Characteristic Point and the Characteristic Length of Robotic Manipulators
,”
ASME 22nd Biennial Conference on Robotics
,
Spatial Mechanisms
,
and Mechanical Systems
, Scottsdale, AZ, Sept. 13–16, pp.
203
208
.
36.
Stocco
,
L.
,
Sacudean
,
S.
, and
Sassani
,
F.
,
1999
, “
On the Use of Scaling Matrices for Task-Specific Robot Design
,”
IEEE Trans. Rob. Autom.
,
15
(
5
), pp.
958
965
.10.1109/70.795800
37.
Liu
,
H.
,
Huang
,
T.
, and
Chetwynd
,
D.
,
2011
, “
A Method to Formulate a Dimensionally Homogeneous Jacobian of Parallel Manipulators
,”
IEEE Trans. Rob.
,
27
(
1
), pp.
150
156
.10.1109/TRO.2010.2082091
38.
Huang
,
T.
,
Liu
,
H.
, and
Chetwynd
,
D.
,
2011
, “
Generalized Jacobian Analysis of Lower Mobility Manipulators
,”
Mech. Mach. Theory
,
46
(
6
), pp.
831
844
.10.1016/j.mechmachtheory.2011.01.009
39.
Rao
,
S.
,
1996
,
Engineering Optimization: Theory and Practice
,
3rd ed.
,
Wiley
,
New York
.
You do not currently have access to this content.