Rolling contact has been used by robotic devices to drive between configurations. The degrees of freedom (DOFs) of rolling contact pairs can be one, two, or three, depending on the geometry of the objects. This paper aimed to derive three kinematic inputs required for the moving object to follow a trajectory described by its velocity profile when the moving object has three rotational DOFs and thus can rotate about any axis through the contact point with respect to the fixed object. We obtained three contact equations in the form of a system of three nonlinear algebraic equations by applying the curvature theory in differential geometry and simplified the three nonlinear algebraic equations to a univariate polynomial of degree six. Differing from the existing solution that requires solving a system of nonlinear ordinary differential equations, this polynomial is suitable for fast and accurate numerical root approximations. The contact equations further revealed the two essential parts of the spin velocity: The induced spin velocity governed by the geometry and the compensatory spin velocity provided externally to realize the desired spin velocity.

References

References
1.
Bicchi
,
A.
, and
Kumar
,
V.
,
2000
, “
Robotic Grasping and Contact: A Review
,”
IEEE International Conference on Robotics and Automation
(
ICRA '00
),
San Francisco, CA
, Apr. 24–28, pp.
348
353
.10.1109/ROBOT.2000.844081
2.
Ma
,
R. R.
, and
Dollar
,
A. M.
,
2013
, “
Linkage-Based Analysis and Optimization of an Underactuated Planar Manipulator for In-Hand Manipulation
,”
ASME J. Mech. Rob.
,
6
(
1
), p.
011002
.10.1115/1.4025620
3.
Joshi
,
V. A.
,
Banavar
,
R. N.
, and
Hippalgaonkar
,
R.
,
2010
, “
Design and Analysis of a Spherical Mobile Robot
,”
Mech. Mach. Theory
,
45
(
2
), pp.
130
136
.10.1016/j.mechmachtheory.2009.04.003
4.
Yangsheng
,
X.
, and
Au
,
S. K. W.
,
2004
, “
Stabilization and Path Following of a Single Wheel Robot
,”
IEEE/ASME Trans. Mechatronics
,
9
(
2
), pp.
407
419
.10.1109/TMECH.2004.828642
5.
Cui
,
L.
, and
Dai
,
J. S.
,
2012
, “
Reciprocity-Based Singular Value Decomposition for Inverse Kinematic Analysis of the Metamorphic Multifingered Hand
,”
ASME J. Mech. Rob.
,
4
(
3
), p.
034502
.10.1115/1.4006187
6.
Bloch
,
A. M.
,
Baillieul
,
J.
,
Crouch
,
P.
, and
Marsden
,
J.
,
2007
,
Nonholonomic Mechanics and Control
,
Springer
,
New York
.
7.
Ostrowski
,
J. P.
,
Desai
,
J. P.
, and
Kumar
,
V.
,
2000
, “
Optimal Gait Selection for Nonholonomic Locomotion Systems
,”
Int. J. Rob. Res.
,
19
(
3
), pp.
225
237
.10.1177/02783640022066833
8.
Javadi
,
A. H.
, and
Mojabi
,
P.
,
2004
, “
Introducing Glory: A Novel Strategy for an Omnidirectional Spherical Rolling Robot
,”
ASME J. Dyn. Syst., Meas., Control
,
126
(
3
), pp.
678
683
.10.1115/1.1789542
9.
Armour
,
R.
, and
Vincent
,
J.
,
2006
, “
Rolling in Nature and Robotics: A Review
,”
J. Bionic Eng.
,
3
(
4
), pp.
195
208
.10.1016/S1672-6529(07)60003-1
10.
Joshi
,
V. A.
, and
Banavar
,
R. N.
,
2009
, “
Motion Analysis of a Spherical Mobile Robot
,”
Robotica
,
27
(
3
), pp.
343
353
.10.1017/S0263574708004748
11.
Kaznov
,
V.
, and
Seeman
,
M.
,
2010
, “
Outdoor Navigation With a Spherical Amphibious Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), IEEE,
Montreal
, Canada, Oct. 18–22, pp.
5113
5118
.10.1109/IROS.2010.5651713
12.
Li
,
T.
, and
Liu
,
W.
,
2011
, “
Design and Analysis of a Wind-Driven Spherical Robot With Multiple Shapes for Environment Exploration
,”
J. Aerosp. Eng.
,
24
(
1
), pp.
135
139
.10.1061/(ASCE)AS.1943-5525.0000063
13.
Xu
,
Y.
,
Brown
,
H. B.
, and
Au
,
K. W.
,
1999
, “
Dynamic Mobility With Single-Wheel Configuration
,”
Int. J. Rob. Res.
,
18
(
7
), pp.
728
738
.10.1177/02783649922066538
14.
Nakajima
,
R.
,
Tsubouchi
,
T.
,
Yuta
,
S.
, and
Koyanagi
,
E.
,
1997
, “
A Development of a New Mechanism of an Autonomous Unicycle
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS '97
),
Grenoble, France
, Sept. 7–11, pp.
906
912
.10.1109/IROS.1997.655117
15.
Cole
,
A.
,
Hauser
,
J. E.
, and
Sastry
,
S.
,
1989
, “
Kinematics and Control of Multifingered Hands With Rolling Contact
,”
IEEE Trans. Autom. Control
,
34
(
4
), pp.
398
404
.10.1109/9.28014
16.
Cui
,
L.
,
Cupcic
,
U.
, and
Dai
,
J. S.
,
2014
, “
An Optimization Approach to Teleoperation of the Thumb of a Humanoid Robot Hand: Kinematic Mapping and Calibration
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091005
.10.1115/1.4027759
17.
Cui
,
L.
, and
Dai
,
J. S.
,
2011
, “
Posture, Workspace, and Manipulability of the Metamorphic Multifingered Hand With an Articulated Palm
,”
ASME J. Mech. Rob.
,
3
(
2
), p.
021001
.10.1115/1.4003414
18.
Dai
,
J. S.
,
Wang
,
D.
, and
Cui
,
L.
,
2009
, “
Orientation and Workspace Analysis of the Multifingered Metamorphic Hand—Metahand
,”
IEEE Trans. Rob.
,
25
(
4
), pp.
942
947
.10.1109/TRO.2009.2017138
19.
Howard
,
B.
,
Yang
,
J.
, and
Ozsoy
,
B.
,
2013
, “
Optimal Posture and Supporting Hand Force Prediction for Common Automotive Assembly One-Handed Tasks
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021009
.10.1115/1.4025749
20.
Sarkar
,
N.
,
Yun
,
X.
, and
Kumar
,
V.
,
1997
, “
Control of Contact Interactions With Acatastatic Nonholonomic Constraints
,”
Int. J. Rob. Res.
,
16
(
3
), pp.
357
374
.10.1177/027836499701600306
21.
Kiss
,
B.
,
Lévine
,
J.
, and
Lantos
,
B.
,
2002
, “
On Motion Planning for Robotic Manipulation With Permanent Rolling Contacts
,”
Int. J. Rob. Res.
,
21
(
5–6
), pp.
443
461
.10.1177/027836402321261959
22.
Tsai
,
W. L.
,
1999
,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
,
Wiley
,
New York
.
23.
Gan
,
D.
,
Liao
,
Q.
,
Dai
,
J. S.
, and
Wei
,
S.
,
2010
, “
Design and Kinematics Analysis of a New 3CCC Parallel Mechanism
,”
Robotica
,
28
(
7
), pp.
1065
1072
.10.1017/S0263574709990555
24.
Kerr
,
J.
, and
Roth
,
B.
,
1986
, “
Analysis of Multifingered Hands
,”
Int. J. Rob. Res.
,
4
(
4
), pp.
3
17
.10.1177/027836498600400401
25.
Montana
,
D. J.
,
1988
, “
The Kinematics of Contact and Grasp
,”
Int. J. Rob. Res.
,
7
(
3
), pp.
17
32
.10.1177/027836498800700302
26.
Marigo
,
A.
, and
Bicchi
,
A.
,
2000
, “
Rolling Bodies With Regular Surface: Controllability Theory and Application
,”
IEEE Trans. Autom. Control
,
45
(
9
), pp.
1586
1599
.10.1109/9.880610
27.
Li
,
Z.
,
Hsu
,
P.
, and
Sastry
,
S.
,
1989
, “
Grasping and Coordinated Manipulation by a Multifingered Robot Hand
,”
Int. J. Rob. Res.
,
8
(
4
), pp.
33
50
.10.1177/027836498900800402
28.
Sankar
,
N.
,
Kumar
,
V.
, and
Yun
,
X.
,
1996
, “
Velocity and Acceleration Analysis of Contact Between Three-Dimensional Rigid Bodies
,”
ASME J. Appl. Mech.
,
63
(
4
), pp.
974
984
.10.1115/1.2787255
29.
Cui
,
L.
, and
Dai
,
J. S.
,
2010
, “
A Darboux-Frame-Based Formulation of Spin-Rolling Motion of Rigid Objects With Point Contact
,”
IEEE Trans. Rob.
,
26
(
2
), pp.
383
388
.10.1109/TRO.2010.2040201
30.
Cartan
,
E.
,
2002
,
Riemannian Geometry in an Orthogonal Frame
,
World Scientific Press
,
Singapore
.
31.
Cartan
,
H.
,
1996
,
Differential Forms
,
Dover Publisher
,
New York
.
32.
Carmo
,
M. P.
,
1976
,
Differential Geometry of Curves and Surfaces
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
33.
Cui
,
L.
,
Wang
,
D.
, and
Dai
,
J. S.
,
2009
, “
Kinematic Geometry of Circular Surfaces With a Fixed Radius Based on Euclidean Invariants
,”
ASME J. Mech. Des.
,
131
(
10
), p.
101009
.10.1115/1.3212679
34.
McCarthy
,
J. M.
,
2011
, “
Kinematics, Polynomials, and Computers—A Brief History
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
010201
.10.1115/1.4003039
35.
Borras
,
J.
, and
Di Gregorio
,
R.
,
2009
, “
Polynomial Solution to the Position Analysis of Two Assur Kinematic Chains With Four Loops and the Same Topology
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021003
.10.1115/1.3046134
36.
Cui
,
L.
,
2010
, “
Differential Geometry Based Kinematics of Sliding-Rolling Contact and Its Use for Multifingered Hands
,”
Ph.D. thesis, King's College London, University of London, London
,
UK
.
37.
Liu
,
H.
,
Song
,
X.
,
Bimbo
,
J.
,
Althoefer
,
K.
, and
Senerivatne
,
L.
,
2012
, “
Intelligent Fingertip Sensing for Contact Information Identification
,”
Advances in Reconfigurable Mechanisms and Robots I
,
J. S.
Dai
,
M.
Zoppi
, and
X.
Kong
, eds.,
Springer
,
London, UK
, pp.
599
608
.
38.
Plant
,
M. W.
, and
Quandt
,
R. E.
,
1989
, “
On the Accuracy and Cost of Numerical Integration in Several Variables
,”
J. Stat. Comput. Simul.
,
32
(
4
), pp.
229
248
.10.1080/00949658908811180
39.
National Instruments
,
2014
, “
NI LabVIEW MathScript RT Module
,” National Instruments Corp., Austin, TX, http://sine.ni.com/nips/cds/view/p/lang/en/nid/207267
40.
Bates
,
D. J.
,
Hauenstein
,
J. D.
,
Sommese
,
A. J.
, and
Wampler
,
C. W.
,
2013
,
Numerically Solving Polynomial Systems With Bertini
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
41.
Jenkins
,
M. A.
, and
Traub
,
J. F.
,
1970
, “
A Three-Stage Variable-Shift Iteration for Polynomial Zeros and Its Relation to Generalized Rayleigh Iteration
,”
Numer. Math.
,
14
(
3
), pp.
252
263
.10.1007/BF02163334
42.
Hameiri
,
E.
, and
Shimshoni
,
I.
,
2003
, “
Estimating the Principal Curvatures and the Darboux Frame From Real 3-D Range Data
,”
IEEE Trans. Syst. Man Cybern. Part B
,
33
(
4
), pp.
626
637
.10.1109/TSMCB.2003.814304
43.
Desbrun
,
M.
,
Meyer
,
M.
,
Schroder
,
P.
, and
Barr
,
A. H.
,
2003
, “
Discrete Differential-Geometry Operators for Triangulated 2-Manifolds
,”
Visualization and Mathematics III
,
H. C. H.
Polthier
, ed.,
Springer-Verlag
,
New York
.
You do not currently have access to this content.