In this paper, a rolling mechanism constructed by a spatial 8-bar linkage is proposed. The eight links are connected with eight revolute joints, forming a single closed-loop with two degrees of freedom (DOF). By kinematic analysis, the mechanism can be deformed into planar parallelogram or spherical 4-bar mechanism (SFM) configuration. Furthermore, this mechanism can be folded onto a plane at its singularity positions. The rolling capability is analyzed based on the zero-moment-point (ZMP) theory. In the first configuration, the mechanism can roll along a straight line. In the second configuration, it can roll along a polygonal region and change its rolling direction. By alternatively choosing one of the two configurations, the mechanism has the capability to roll along any direction on the ground. Finally, a prototype was manufactured and some experiments were carried out to verify the functions of the mechanism.

References

References
1.
Ylikorpi
,
T.
, and
Suomela
,
J.
,
2006
, “
Ball Shaped Robots: An Historical Overview and Recent Development at TKK
,”
Field Service Rob.
,
25
(
6
), pp.
343
354
.10.1007/978-3-540-33453-8
2.
Halme
,
A.
,
Schönberg
,
T.
, and
Wang
,
Y.
,
1996
, “
Motion Control of a Spherical Mobile Robot
,”
IEEE 4th International Workshop on Advanced Motion Control
(
AMC '96-MIE
),
Mie, Japan
, Mar. 18–21, pp.
259
264
.10.1109/AMC.1996.509415
3.
Bicchi
,
A.
,
Balluchi
,
A.
,
Prattichizzo
,
D.
, and
Gorelli
,
A.
,
1997
, “
Introducing the ‘SPHERICLE’: An Experimental Testbed for Research and Teaching in Nonholonomy
,”
IEEE International Conference on Robototics and Automation
, Albuquerque, NM, Apr. 20–25, pp.
2620
2625
.10.1109/ROBOT.1997.619356
4.
Mukherjee
,
R.
,
Minor
,
M. A.
, and
Pukrushpan
,
J. T.
,
2002
, “
Motion Planning for a Spherical Mobile Robot: Revisiting the Classical Ball-Plate Problem
,”
ASME J. Dyn. Syst. Meas. Contr.
,
124
(
4
), pp.
502
511
.10.1115/1.1513177
5.
Javadi
,
A. H.
, and
Mojabi
,
P.
,
2004
, “
Introducing Glory: A Novel Strategy for an Omnidirectional Spherical Rolling Robot
,”
ASME J. Dyn. Syst. Meas. Contr.
,
126
(
3
), pp.
678
683
.10.1115/1.1789542
6.
Sugiyama
,
Y.
, and
Hirai
,
S.
,
2006
, “
Crawling and Jumping by a Deform Robot
,”
Int. J. Rob. Res.
,
25
(
5–6
), pp.
603
620
.10.1177/0278364906065386
7.
Shibata
,
M.
, and
Hirai
,
S.
,
2009
, “
Rolling Locomotion of Deformable Tensegrity Structure
,”
12th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines
,
Istanbul, Turkey, Sept. 9–11
, pp.
479
486
.
8.
Calladine
,
C. R.
,
1978
, “
Buckminster Fuller's ‘Tensegrity’ Structures and Clerk Maxwell's Rules for the Construction of Stiff Frames
,”
Int. J. Solids Struct.
,
14
(2), pp.
161
172
.10.1016/0020-7683(78)90052-5
9.
Sastra
,
J.
,
Chitta
,
S.
, and
Yim
,
M.
,
2009
, “
Dynamic Rolling for a Modular Loop Robot
,”
Int. J. Rob. Res.
,
28
(
6
), pp.
758
773
.10.1177/0278364908099463
10.
Yim
,
M.
,
Duff
,
D. G.
, and
Roufas
,
K. D.
,
2000
, “
PolyBot: A Modular Reconfigurable Robot
,”
IEEE International Conference on Robotics and Automation
(
ICRA '00
),
San Francisco
, Apr. 24–28, pp.
514
520
.10.1109/ROBOT.2000.844106
11.
Lee
,
W. H.
, and
Sanderson
,
A. C.
,
2002
, “
Dynamic Rolling Locomotion and Control of Modular Robots
,”
IEEE Trans. Rob. Autom.
,
18
(
1
), pp.
32
41
.10.1109/70.988972
12.
Clark
,
P. E.
,
Rilee
,
M. L.
,
Curtis
,
S. A.
,
Truszkowski
,
W.
,
Marr
,
G.
,
Cheung
,
C.
, and
Rudisill
,
M.
,
2004
, “
BEES for ANTS: Space Mission Applications for the Autonomous Nanotechnology Swarm
,”
First AIAA Intelligent Systems Technical Conference
, Chicago, IL, Sept. 20–22, Session 29-IS-13.10.2514/6.2004-6303
13.
Lyder
,
A.
,
Franco
,
R.
,
Garcia
,
M.
, and
Stoy
,
K.
,
2008
, “
Mechanical Design of Odin, an Extendable Heterogeneous Deformable Modular Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2008
),
Nice
, France, Sept. 22–26, pp.
883
888
.10.1109/IROS.2008.4650888
14.
Liu
,
C. H.
,
Yao
,
Y. A.
,
Li
,
R. M.
,
Tian
,
Y. B.
,
Zhang
,
N.
,
Ji
,
Y. Y.
, and
Kong
,
F. Z.
,
2012
, “
Rolling 4R Linkages
,”
Mech. Mach. Theory
,
48
, pp.
1
14
.10.1016/j.mechmachtheory.2011.10.005
15.
Tian
,
Y. B.
, and
Yao
,
Y. A.
,
2012
, “
Constructing Rolling Mechanisms Based on Tetrahedron Units
,”
2nd ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
,
Tianjing, China
, July 9–11, pp.
221
232
.10.1007/978-1-4471-4141-9_21
16.
Tian
,
Y. B.
, and
Yao
,
Y. A.
,
2014
, “
Dynamic Rolling Analysis of Triangular-Bipyramid Robot
,”
Robotica
(in press).10.1017/S0263574714000666
17.
Liu
,
C. H.
,
Li
,
R. M.
, and
Yao
,
Y. A.
,
2012
, “
An Omnidirectional Rolling 8U Parallel Mechanism
,”
ASME J. Mech. Rob.
,
4
(
3
), p.
034501
.10.1115/1.4006657
18.
Yan
,
C.
,
Zhou
,
Y.
, and
Tarnai
,
T.
,
2005
, “
Threefold-Symmetric Bricard Linkages for Deployable Structures
,”
Int. J. Solids Struct.
,
4
(
8
), pp.
2287
2301
.10.1016/j.ijsolstr.2004.09.014
19.
Gogu
,
G.
,
2005
, “
Mobility of Mechanisms: A Critical Review
,”
Mech. Mach. Theory
,
40
(
9
), pp.
1068
1097
.10.1016/j.mechmachtheory.2004.12.014
20.
Gosselin
,
C.
,
1993
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.10.1109/70.56660
21.
Vukobratović
,
M.
,
Frank
,
A. A.
, and
Juricic
,
D.
,
1970
, “
On the Stability of Biped Locomotion
,”
IEEE Trans. Biomed. Eng.
,
17
(
1
), pp.
25
36
.10.1109/TBME.1970.4502681
22.
Kim
,
J.
,
Chung
,
W. K.
,
Youm
,
Y.
, and
Lee
,
B. H.
,
2002
, “
Real-Time ZMP Compensation Method Using Null Motion for Mobile Manipulators
,”
IEEE International Conference on Robotics and Automation
(
ICRA '02
),
Washington, DC
, May 11–15, pp.
1967
1972
.10.1109/ROBOT.2002.1014829
23.
Takanishi
,
A.
,
Tochizawa
,
M.
,
Takeya
,
T.
,
Karaki
,
H.
, and
Kato
,
I.
,
1989
, “
Realization of Dynamic Biped Walking Stabilized With Trunk Motion Under Known External Force
,”
4th International Conference on Advanced Robotics
,
Columbus
, OH, June 13–15, pp.
299
310
.10.1007/978-3-642-83957-3_21
You do not currently have access to this content.