In order to obtain a comprehensive list of possible mechanisms with various choices of both R and P pairs and mechanism inversion of planar mechanisms, a new structural synthesis method is developed by integrating Assur groups (AGs) as elements in the newly developed group-based adjacency matrix. This extended adjacency matrix is proposed with the diagonal elements representing three fundamental elements as the frame link, driving link, AG and augmented AG (AAG) if metamorphic mechanisms are to be synthesized. The off-diagonal elements provide information on group combination and connection forms of the above three fundamental elements and that on the associated kinematic pairs. Based on the extended adjacency matrix, all assembly modes for the given AGs can be established and isomorphism mechanisms can be identified at the same time. Considering all types of the AGs in the extended adjacency matrix, group permutation and combination are used and connection forms are generated including variation of the driving link and mechanism inversion. The structural synthesis is then extending to generating a comprehensive list of types of mechanisms and illustrated by the synthesis for class II 6-bar planar mechanisms with both R and P pairs, generating a list of 588 types of mechanisms that are derived for the first time. The paper further applies the approach to metamorphic mechanisms, and obtained five connection forms of the 7-bar 2DOF metamorphic mechanisms.

References

References
1.
Davies
,
T. H.
, and
Crossley
,
F. R. E.
,
1966
, “
Structural Analysis of Plane Linkages by Franke's Condensed Notation
,”
J. Mech.
,
1
(
2
), pp.
171
184
.10.1016/0022-2569(66)90021-8
2.
Hass
,
S. L.
, and
Crossley
,
F. R. E.
,
1969
, “
Structural Synthesis of a Four-Bit Binary Adding Mechanism
,”
ASME J. Manuf. Sci. Eng.
,
91
(
1
), pp.
240
249
.10.1115/1.3591536
3.
Manolescu
,
N. I.
,
1973
, “
A Method Based on Baranov Trusses and Using Graph Theory to Find the Set of Planar Jointed Kinematic Chains and Mechanisms
,”
Mech. Mach. Theory
,
8
(
1
), pp.
3
22
.10.1016/0094-114X(73)90003-7
4.
Mruthyunjaya
,
T. S.
,
1979
, “
Structural Synthesis by Transformation of Binary Chains
,”
Mech. Mach. Theory
,
14
(
4
), pp.
221
231
.10.1016/0094-114X(79)90009-0
5.
Mruthyunjaya
,
T. S.
,
1984
, “
A Computerized Methodology for Structural Synthesis of Kinematic Chains: Part 1—Formulation
,”
Mech. Mach. Theory
,
19
(
6
), pp.
487
495
.10.1016/0094-114X(84)90055-7
6.
Manolescu
,
N. I.
,
1968
, “
For a United Point of View in the Study of the Structural Analysis of Kinematic Chains and Mechanisms
,”
J. Mech.
,
3
(
3
), pp.
149
169
.10.1016/0022-2569(68)90353-4
7.
Mruthyunjaya
,
T. S.
, and
Raghavan
,
M. R.
,
1984
, “
Computer Aided Analysis of the Structure of Kinematic Chains
,”
Mech. Mach. Theory
,
19
(
3
), pp.
357
368
.10.1016/0094-114X(84)90070-3
8.
Rao
,
A. C.
, and
Deshmukh
,
P. B.
,
2001
, “
Computer Aided Structural Synthesis of Planar Kinematic Chains Obviating the Test for Isomorphism
,”
Mech. Mach. Theory
,
36
(
4
), pp.
489
506
.10.1016/S0094-114X(00)00030-6
9.
Chu
,
J. K.
, and
Cao
,
W. Q.
,
1991
, “
Type Synthesis of 6-Bar One-DOF Linkage With R and P Pairs
,”
J. Mech. Sci. Technol. Aerosp. Eng.
,
10
(
2
), pp.
8
23
.
10.
Chu
,
J. K.
, and
Cao
,
W. Q.
,
1994
, “
Type Synthesis of 8-Bar One-DOF Multiple Joint Linkage
,”
J. Mech. Sci. Technol. Aerosp. Eng.
,
9
(
4
), pp.
56
61
.
11.
Chu
,
J. K.
, and
Cao
,
W. Q.
,
1998
, “
Systemics of Assur Groups With Multiple Joints
,”
Mech. Mach. Theory
,
33
(
8
), pp.
1127
1133
.10.1016/S0094-114X(97)00117-1
12.
Lulian
,
P.
, and
Dan
,
B. M.
,
2008
, “
Structural Design of Planar Mechanisms With Dyads
,”
Multibody Syst. Dyn.
,
19
(
4
), pp.
407
425
.10.1007/s11044-007-9099-6
13.
Shai
,
O.
,
2010
, “
Topological Synthesis of All 2D Mechanisms Through Assur Graphs
,”
ASME
Paper No. DETC2010-28926.10.1115/DETC2010-28926
14.
Galletti
,
C. U.
,
1986
, “
A Note on Modular Approach to Planar Linkage Kinematic Analysis
,”
Mech. Mach. Theory
,
21
(
5
), pp.
385
391
.10.1016/0094-114X(86)90086-8
15.
Tuttle
,
E. R.
, and
Peterson
,
S. W.
,
1987
, “
Symmetry Group Theory Applied to Kinematic Chain Enumeration
,”
10th Applied Mechanisms Conference
,
New Orleans, LA
, Dec. 6–9.
16.
Tuttle
,
E. R.
,
Peterson
,
S. W.
, and
Titus
,
J. E.
,
1989
, “
Enumeration of Basic Kinematic Chains Using the Theory of Unite Groups
,”
J. Mech., Transm., Autom. Des.
,
111
(
4
), pp.
498
503
.10.1115/1.3259028
17.
Tuttle
,
E. R.
,
Peterson
,
S. W.
, and
Titus
,
J. E.
,
1989
, “
Further Applications of Group Theory to the Enumeration and Structural Analysis of Basic Kinematic Chains
,”
J. Mech., Transm., Autom. Des.
,
111
(
4
), pp.
494
497
.10.1115/1.3259027
18.
Tuttle
,
E. R.
,
1996
, “
Generation of Planar Kinematic Chains
,”
Mech. Mach. Theory
,
31
(
6
), pp.
729
748
.10.1016/0094-114X(95)00083-B
19.
Li
,
S. J.
,
1990
, “
Computer-Aided Structure Synthesis of Spatial Kinematic Chains
,”
Mech. Mach. Theory
,
25
(
6
), pp.
645
653
.10.1016/0094-114X(90)90007-7
20.
Hwang
,
W.-M.
, and
Hwang
,
Y.-W.
,
1992
, “
Computer-Aided Structural Synthesis of Planar Kinematic Chains With Simple Joints
,”
Mech. Mach. Theory
,
27
(
2
), pp.
189
199
.10.1016/0094-114X(92)90008-6
21.
Rao
,
A. C.
, and
Raju
,
D. V.
,
1991
, “
Application of the Hamming Number Technique to Detect Isomorphism Among Kinematic Chains and Inversions
,”
Mech. Mach. Theory
,
26
(
1
), pp.
55
75
.10.1016/0094-114X(91)90022-V
22.
Li
,
S. J.
,
Song
,
G. Q.
,
Du
,
L. Q.
, and
Zhang
,
G. Z.
,
2002
, “
Identification Isomorphism and Inversion of Kinematic Chains Using Loop-Link-Matrix
,”
Chin. J. Mech. Eng.
,
38
(
1
), pp.
149
153
(in Chinese).10.3901/JME.2002.01.149
23.
Yan
,
H. S.
, and
Kuo
,
C. H.
,
2006
, “
Topological Representations and Characteristics of Variable Kinematic Joints
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
384
391
.10.1115/1.2166854
24.
Li
,
S. J.
, and
Dai
,
J. S.
,
2012
, “
Structure Synthesis of Single-Driven Metamorphic Mechanisms Based on the Augmented Assur Groups
,”
ASME J. Mech. Rob.
,
4
(
3
), p.
031004
.10.1115/1.4006741
25.
Li
,
S. J.
, and
Dai
,
J. S.
,
2011
, “
Topological Representation of Planar Mechanisms Based on Assur Group Elements
,”
Chin. J. Mech. Eng.
,
47
(
19
), pp.
8
13
(in Chinese).10.3901/JME.2011.19.008
26.
Li.
,
S. J.
, and
Dai
,
J. S.
,
2012
, “
The Structural Synthesis Method of Planar Mechanisms Using the Assur-Group Based Adjacency Matrix
,”
Chin. J. Mech. Eng.
,
48
(
13
), pp.
13
18
(in Chinese).10.3901/JME.2012.13.013
You do not currently have access to this content.