Parallel kinematic mechanisms (PKMs) provide high stiffness and compact structures that are suitable for a large number of applications, including 5-axis milling. This paper presents a new pentapod-based PKM with an additional redundant degree-of-freedom (DOF) capable of reaching platform tilt angles of at least 90 deg over a large workspace. The proposed new PKM has a 6DOF 4 × SPRR + 1 × PSPR architecture. It is compared herein to Metrom® Pentapod as well as to several other pertinent PKMs in terms of workspace and dynamic stiffness. It is shown that the proposed mechanism can yield a tangibly larger workspace volume, when compared to those PKMs, while maintaining its high stiffness characteristics.
Issue Section:
Technical Brief
References
1.
Kong
, X.
, and Gosselin
, C.
, 2007
, Type Synthesis of Parallel Mechanisms, Springer Tracts in Advanced Robotics
, Vol. 33
, Springer
, Heidelberg, Germany
.2.
Merlet
, J.-P.
, 2006
, Parallel Robots
, 2nd ed., Springer
, Dordrecht, Netherlands
.3.
Kim
, J.
, Park
, F. C.
, Ryu
, S. J.
, Kim
, J.
, Hwang
, J. C.
, Park
, C.
, and Iurascu
, C. C.
, 2001
, “Design and Analysis of a Redundantly Actuated Parallel Mechanism for Rapid Machining
,” IEEE Trans. Rob. Autom.
, 17
(4
), pp. 423
–434
.10.1109/70.9547554.
Alizade
, R. I.
, Tagiyev
, N. R.
, and Duffy
, J.
, 1994
, “A Forward and Reverse Displacement Analysis of a 6-DOF In-Parallel Manipulator
,” Mech. Mach. Theory
, 29
(1
), pp. 115
–124
.10.1016/0094-114X(94)90024-85.
Glozman
, D.
, and Shoham
, M.
, 2009
, “Novel 6-DOF Parallel Manipulator With Large Workspace
,” Robotica
, 27
(6
), pp. 891
–895
.10.1017/S02635747080052866.
Azulay
, H.
, Mahmoodi
, M.
, Zhao
, R.
, Mills
, J. K.
, and Benhabib
, B.
, 2014
, “Comparative Analysis of a New 3 × PPRS Parallel Kinematic Mechanism
,” Rob. Comput. Integr. Manuf.
, 30
(4
), pp. 369
–378
.10.1016/j.rcim.2013.12.0037.
Behi
, F.
, 1988
, “Kinematic Analysis for a Six-Degree-of-Freedom 3-PRPS Parallel Mehcanism
,” IEEE J. Rob. Autom.
, 4
(5
), pp. 561
–565
.10.1109/56.204428.
Tahmasebi
, F.
, and Tsai
, L. W.
, 1995
, “On the Stiffness of a Novel Six-Degree-of-Freedom Parallel Manipulator
,” J. Rob. Syst.
, 12
(12
), pp. 845
–856
.10.1002/rob.46201212089.
Ben-Horin
, R.
, Shohram
, M.
, and Djerassi
, S.
, 1998
, “Kinematics, Dynamics and Construction of a Planarly Actuated Parallel Robot
,” Rob. Comput. Integr. Manuf.
, 14
(2
), pp. 163
–172
.10.1016/S0736-5845(97)00035-510.
Chen
, C.
, Gayral
, T.
, Caro
, S.
, Chablat
, D.
, Moroz
, G.
, and Abeywardena
, S.
, 2012
, “A Six Degree of Freedom Epicyclic-Parallel Manipulator
,” ASME J. Mech. Rob.
, 4
(4
), p. 041011
.10.1115/1.400748911.
Weck
, M.
, and Staimer
, D.
, 2002
, “Parallel Kinematic Machine Tools—Current State and Future Potentials
,” CIRP Ann. Manuf. Technol.
, 51
(2
), pp. 671
–683
.10.1016/S0007-8506(07)61706-512.
Bär
, G. F.
, and Weiß
, G.
, 2006
, “Kinematic Analysis of a Pentapod Robot
,” J. Geom. Gr.
, 10
(2
), pp. 173
–182
.13.
Gogu
, G.
, 2011
, Structural Synthesis of Parallel Robots: Part 4: Other Topologies With Two and Three Degrees of Freedom
, Vol. 183
, Springer
, New York
.14.
Lu
, Y.
, Hu
, B.
, and Xu
, J. Y.
, 2008
, “Kinematics Analysis and Solution of Active/Passive Forces of a 4SPS + SPR Parallel Machine Tool
,” Int. J. Adv. Manuf. Technol.
, 36
(1–2
), pp. 178
–187
.10.1007/s00170-006-0833-715.
Fraunhofer IWS, 2014, “Pentapod Multifunctional System,” Fraunhofer-Gesellschaft, Dresden, Germany, accessed May 7, 2014, http://www.iws.fraunhofer.de/en/business_fields/joining/special_joining_technologies/equipment/pentapod_multifunctional_system.html
16.
Zhang
, T.
, Minami
, M.
, Yasukura
, O.
, and Song
, W.
, 2011
, “Reconfiguration Manipulability Analyses for Redundant Robots
,” ASME J. Mech. Rob.
, 5
(4
), p. 041001
.10.1115/1.402472717.
Finistauri
, A. D.
, and Xi
, F. J.
, 2013
, “Reconfiguration Analysis of a Fully Reconfigurable Parallel Robot
,” ASME J. Mech. Rob.
, 5
(4
), p. 041002
.10.1115/1.402473418.
Neugebauer
, R.
, Schwaar
, M.
, Ihlenfeldt
, St.
, Pritschow
, G.
, Eppler
, C.
, and Garber
, T.
, 2002
, “New Approaches to Machine Structures to Overcome the Limits of Classical Parallel Structures
,” CIRP Ann.Manuf. Technol.
, 51
(1
), pp. 293
–296
.10.1016/S0007-8506(07)61520-019.
Moosavian
, A.
, and Xi
, F. J.
, 2014
, “Design and Analysis of Reconfigurable Parallel Robots With Enhanced Stiffness
,” Mech. Mach. Theory
, 77
, pp. 92
–110
.10.1016/j.mechmachtheory.2014.02.00520.
Kotlaraski
, J.
, Heimann
, B.
, and Ortmaier
, T.
, 2012
, “Influence of Kinematic Redundancy on the Singularity-Free Workspace of Parallel Kinematic Machines
,” Front. Mech. Eng.
, 7
(2
), pp. 120
–134
.10.1007/s11465-012-0321-821.
Ebrahimi
, I.
, Carretero
, J. A.
, and Boudreau
, R.
, 2007
, “3-RR Redundant Planar Parallel Manipulator: Inverse Displacement, Workspace, and Singularity Analyses
,” Mech. Mach. Theory
, 42
(8
), pp. 1007
–1016
.10.1016/j.mechmachtheory.2006.07.00622.
Müller
, A.
, 2008
, “Redundant Actuation of Parallel Manipulators
,” Parallel Manipulators, Towards New Applications
, I-Tech Education and Publishing
, Vienna, Austria
, pp. 87
–108
.23.
Chakarov
, D.
, 2004
, “Study of the Antagonistic Stiffness of Parallel Manipulators With Actuation Redundancy
,” Mech. Mach. Theory
, 39
(6
), pp. 583
–601
.10.1016/j.mechmachtheory.2003.12.00124.
Nokleby
, S. B.
, Fisher
, R.
, and Podhorodeski
, R. P.
, 2005
, “Force Capabilities of Redundantly-Actuated Parallel Manipulators
,” Mech. Mach. Theory
, 40
(5
), pp. 578
–599
.10.1016/j.mechmachtheory.2004.10.00525.
Liu
, X. J.
, Wu
, C.
, and Wang
, J.
, 2012
, “A New Approach for Singularity Analysis and Closeness Measurement to Singularities of Parallel Manipulators
,” ASME J. Mech. Rob.
, 4
(4
), p. 041001
.10.1115/1.400700426.
Zlatanov
, D.
, Fenton
, R. G.
, and Benhabib
, B.
, 1994
, “Analysis of the Instantaneous Kinematics and Singular Configurations of Hybrid-Chain Manipulators
,” 23rd ASME Biennial Mechanisms Conference
, Minneapolis, MN, Sept. 11–14, pp. 467
–476
.27.
Zlatanov
, D.
, Fenton
, R. G.
, and Benhabib
, B.
, 1998
, “Identification and Classification of the Singular Configurations of Mechanisms
,” Mech. Mach. Theory
, 33
(6
), pp. 743
–760
.10.1016/S0094-114X(97)00053-028.
Zheng
, K. J.
, Gao
, J. S.
, and Zhao
, Y. S.
, 2005
, “Path Control Algorithms of a Novel 5-DOF Parallel Machine Tool
,” IEEE International Conference on Mechatronics and Automation
, Niagara Falls, ON, Canada, July 29–Aug. 1, pp. 1381
–1385
.10.1109/ICMA.2005.162675529.
Weiyang
, L.
, Li
, B.
, Yang
, X.
, and Zhang
, D.
, 2013
, “Modelling and Control of Inverse Dynamics for a 5-DOF Parallel Kinematic Polishing Machine
,” Int. J. Adv. Rob. Syst.
, 10
, pp. 1
–21
.10.5772/5496630.
Gallet
, M.
, Nawratil
, G.
, and Schicho
, J.
, 2014
, “Bond Theory for Pentapods and Hexapods
,” J. Geom.
, epub.10.1007/s00022-014-0243-131.
Borràs
, J.
, Thomas
, F.
, and Torras
, C.
, 2011
, “Architectural Singularities of a Class of Pentapods
,” Mech. Mach. Theory
, 46
(8
), pp. 1107
–1120
.10.1016/j.mechmachtheory.2011.03.00532.
Borràs
, J.
, Thomas
, F.
, and Torras
, C.
, 2011
, “Singularity-Invarient Families of Line-Plane 5-SPU Platforms
,” IEEE Trans. Rob.
, 27
(5
), pp. 837
–848
.10.1109/TRO.2011.215801833.
Gao
, F.
, Peng
, B.
, Zhao
, H.
, and Li
, W.
, 2006
, “A Novel 5-DOF Fully Parallel Kinematic Machine Tool
,” Int. J. Adv. Manuf. Technol.
, 31
(1–2
), pp. 201
–207
.10.1007/s00170-005-0171-134.
Suh
, S.-H.
, Lee
, E.-S.
, and Jung
, S.-Y.
, 1998
, “Error Modeling and Measurement for the Rotary Table of Five-Axis Machine Tools
,” Int. J. Adv. Manuf. Technol.
, 14
(9
), pp. 656
–663
.10.1007/BF0119228635.
Zhang
, Y.
, Yang
, J.
, and Zhang
, K.
, 2013
, “Geometric Error Measurement and Compensation for Rotary Table of Five-Axis Machine Tool With Double Ballbar
,” Int. J. Adv. Manuf. Technol.
, 65
(1–4
), pp. 275
–281
.10.1007/s00170-012-4166-436.
Hartenberg
, R. S.
, and Denavit
, J.
, 1964
, Kinematic Synthesis of Linkages
, McGraw-Hill
, New York
.37.
Bonev
, I. A.
, and Ryu
, J.
, 2001
, “A New Approach to Orientation Workspace Analysis of 6-DOF Parallel Manipulators
,” Mech. Mach. Theory
, 36
(1
), pp. 15
–28
.10.1016/S0094-114X(00)00032-X38.
Merlet
, J.-P.
, 1996
, “Redundant Parallel Manipulators
,” Lab. Rob. Autom.
, 8
(1
), pp. 17
–24
.10.1002/(SICI)1098-2728(1996)8:1<17::AID-LRA3>3.0.CO;2-#39.
Zhang
, D.
, 2010
, Parallel Robotic Machine Tools
, Springer
, New York
.40.
Yue
, Y.
, Gao
, F.
, Zhao
, X.
, and Ge
, Q. J.
, 2009
, “Relationship Among Input-Force, Payload, Stiffness, and Displacement of a 6-DOF Perpendicular Parallel Micromanipulator
,” ASME J. Mech. Rob.
, 2
(1
), p. 011007
.10.1115/1.400052541.
Mahmoodi
, M.
, Mills
, J. K.
, and Benhabib
, B.
, 2013
, “Configuration-Dependency of Structural Vibration Response Amplitudes in Parallel Kinematic Mechanisms
,” 2nd International Conference on Virtual Machining Process Technology (VMPT)
, Hamilton, ON, Canada, May 13–17.Copyright © 2015 by ASME
You do not currently have access to this content.