Parallel kinematic mechanisms (PKMs) provide high stiffness and compact structures that are suitable for a large number of applications, including 5-axis milling. This paper presents a new pentapod-based PKM with an additional redundant degree-of-freedom (DOF) capable of reaching platform tilt angles of at least 90 deg over a large workspace. The proposed new PKM has a 6DOF 4 × SPRR + 1 × PSPR architecture. It is compared herein to Metrom® Pentapod as well as to several other pertinent PKMs in terms of workspace and dynamic stiffness. It is shown that the proposed mechanism can yield a tangibly larger workspace volume, when compared to those PKMs, while maintaining its high stiffness characteristics.

References

1.
Kong
,
X.
, and
Gosselin
,
C.
,
2007
,
Type Synthesis of Parallel Mechanisms, Springer Tracts in Advanced Robotics
, Vol.
33
,
Springer
,
Heidelberg, Germany
.
2.
Merlet
,
J.-P.
,
2006
,
Parallel Robots
, 2nd ed.,
Springer
,
Dordrecht, Netherlands
.
3.
Kim
,
J.
,
Park
,
F. C.
,
Ryu
,
S. J.
,
Kim
,
J.
,
Hwang
,
J. C.
,
Park
,
C.
, and
Iurascu
,
C. C.
,
2001
, “
Design and Analysis of a Redundantly Actuated Parallel Mechanism for Rapid Machining
,”
IEEE Trans. Rob. Autom.
,
17
(
4
), pp.
423
434
.10.1109/70.954755
4.
Alizade
,
R. I.
,
Tagiyev
,
N. R.
, and
Duffy
,
J.
,
1994
, “
A Forward and Reverse Displacement Analysis of a 6-DOF In-Parallel Manipulator
,”
Mech. Mach. Theory
,
29
(
1
), pp.
115
124
.10.1016/0094-114X(94)90024-8
5.
Glozman
,
D.
, and
Shoham
,
M.
,
2009
, “
Novel 6-DOF Parallel Manipulator With Large Workspace
,”
Robotica
,
27
(
6
), pp.
891
895
.10.1017/S0263574708005286
6.
Azulay
,
H.
,
Mahmoodi
,
M.
,
Zhao
,
R.
,
Mills
,
J. K.
, and
Benhabib
,
B.
,
2014
, “
Comparative Analysis of a New 3 × PPRS Parallel Kinematic Mechanism
,”
Rob. Comput. Integr. Manuf.
,
30
(
4
), pp.
369
378
.10.1016/j.rcim.2013.12.003
7.
Behi
,
F.
,
1988
, “
Kinematic Analysis for a Six-Degree-of-Freedom 3-PRPS Parallel Mehcanism
,”
IEEE J. Rob. Autom.
,
4
(
5
), pp.
561
565
.10.1109/56.20442
8.
Tahmasebi
,
F.
, and
Tsai
,
L. W.
,
1995
, “
On the Stiffness of a Novel Six-Degree-of-Freedom Parallel Manipulator
,”
J. Rob. Syst.
,
12
(
12
), pp.
845
856
.10.1002/rob.4620121208
9.
Ben-Horin
,
R.
,
Shohram
,
M.
, and
Djerassi
,
S.
,
1998
, “
Kinematics, Dynamics and Construction of a Planarly Actuated Parallel Robot
,”
Rob. Comput. Integr. Manuf.
,
14
(
2
), pp.
163
172
.10.1016/S0736-5845(97)00035-5
10.
Chen
,
C.
,
Gayral
,
T.
,
Caro
,
S.
,
Chablat
,
D.
,
Moroz
,
G.
, and
Abeywardena
,
S.
,
2012
, “
A Six Degree of Freedom Epicyclic-Parallel Manipulator
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041011
.10.1115/1.4007489
11.
Weck
,
M.
, and
Staimer
,
D.
,
2002
, “
Parallel Kinematic Machine Tools—Current State and Future Potentials
,”
CIRP Ann. Manuf. Technol.
,
51
(
2
), pp.
671
683
.10.1016/S0007-8506(07)61706-5
12.
Bär
,
G. F.
, and
Weiß
,
G.
,
2006
, “
Kinematic Analysis of a Pentapod Robot
,”
J. Geom. Gr.
,
10
(
2
), pp.
173
182
.
13.
Gogu
,
G.
,
2011
,
Structural Synthesis of Parallel Robots: Part 4: Other Topologies With Two and Three Degrees of Freedom
, Vol.
183
,
Springer
,
New York
.
14.
Lu
,
Y.
,
Hu
,
B.
, and
Xu
,
J. Y.
,
2008
, “
Kinematics Analysis and Solution of Active/Passive Forces of a 4SPS + SPR Parallel Machine Tool
,”
Int. J. Adv. Manuf. Technol.
,
36
(
1–2
), pp.
178
187
.10.1007/s00170-006-0833-7
15.
Fraunhofer IWS, 2014, “Pentapod Multifunctional System,” Fraunhofer-Gesellschaft, Dresden, Germany, accessed May 7, 2014, http://www.iws.fraunhofer.de/en/business_fields/joining/special_joining_technologies/equipment/pentapod_multifunctional_system.html
16.
Zhang
,
T.
,
Minami
,
M.
,
Yasukura
,
O.
, and
Song
,
W.
,
2011
, “
Reconfiguration Manipulability Analyses for Redundant Robots
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041001
.10.1115/1.4024727
17.
Finistauri
,
A. D.
, and
Xi
,
F. J.
,
2013
, “
Reconfiguration Analysis of a Fully Reconfigurable Parallel Robot
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041002
.10.1115/1.4024734
18.
Neugebauer
,
R.
,
Schwaar
,
M.
,
Ihlenfeldt
,
St.
,
Pritschow
,
G.
,
Eppler
,
C.
, and
Garber
,
T.
,
2002
, “
New Approaches to Machine Structures to Overcome the Limits of Classical Parallel Structures
,”
CIRP Ann.Manuf. Technol.
,
51
(
1
), pp.
293
296
.10.1016/S0007-8506(07)61520-0
19.
Moosavian
,
A.
, and
Xi
,
F. J.
,
2014
, “
Design and Analysis of Reconfigurable Parallel Robots With Enhanced Stiffness
,”
Mech. Mach. Theory
,
77
, pp.
92
110
.10.1016/j.mechmachtheory.2014.02.005
20.
Kotlaraski
,
J.
,
Heimann
,
B.
, and
Ortmaier
,
T.
,
2012
, “
Influence of Kinematic Redundancy on the Singularity-Free Workspace of Parallel Kinematic Machines
,”
Front. Mech. Eng.
,
7
(
2
), pp.
120
134
.10.1007/s11465-012-0321-8
21.
Ebrahimi
,
I.
,
Carretero
,
J. A.
, and
Boudreau
,
R.
,
2007
, “
3-PR¯RR Redundant Planar Parallel Manipulator: Inverse Displacement, Workspace, and Singularity Analyses
,”
Mech. Mach. Theory
,
42
(
8
), pp.
1007
1016
.10.1016/j.mechmachtheory.2006.07.006
22.
Müller
,
A.
,
2008
, “
Redundant Actuation of Parallel Manipulators
,”
Parallel Manipulators, Towards New Applications
,
I-Tech Education and Publishing
,
Vienna, Austria
, pp.
87
108
.
23.
Chakarov
,
D.
,
2004
, “
Study of the Antagonistic Stiffness of Parallel Manipulators With Actuation Redundancy
,”
Mech. Mach. Theory
,
39
(
6
), pp.
583
601
.10.1016/j.mechmachtheory.2003.12.001
24.
Nokleby
,
S. B.
,
Fisher
,
R.
, and
Podhorodeski
,
R. P.
,
2005
, “
Force Capabilities of Redundantly-Actuated Parallel Manipulators
,”
Mech. Mach. Theory
,
40
(
5
), pp.
578
599
.10.1016/j.mechmachtheory.2004.10.005
25.
Liu
,
X. J.
,
Wu
,
C.
, and
Wang
,
J.
,
2012
, “
A New Approach for Singularity Analysis and Closeness Measurement to Singularities of Parallel Manipulators
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041001
.10.1115/1.4007004
26.
Zlatanov
,
D.
,
Fenton
,
R. G.
, and
Benhabib
,
B.
,
1994
, “
Analysis of the Instantaneous Kinematics and Singular Configurations of Hybrid-Chain Manipulators
,”
23rd ASME Biennial Mechanisms Conference
, Minneapolis, MN, Sept. 11–14, pp.
467
476
.
27.
Zlatanov
,
D.
,
Fenton
,
R. G.
, and
Benhabib
,
B.
,
1998
, “
Identification and Classification of the Singular Configurations of Mechanisms
,”
Mech. Mach. Theory
,
33
(
6
), pp.
743
760
.10.1016/S0094-114X(97)00053-0
28.
Zheng
,
K. J.
,
Gao
,
J. S.
, and
Zhao
,
Y. S.
,
2005
, “
Path Control Algorithms of a Novel 5-DOF Parallel Machine Tool
,”
IEEE International Conference on Mechatronics and Automation
, Niagara Falls, ON, Canada, July 29–Aug. 1, pp.
1381
1385
.10.1109/ICMA.2005.1626755
29.
Weiyang
,
L.
,
Li
,
B.
,
Yang
,
X.
, and
Zhang
,
D.
,
2013
, “
Modelling and Control of Inverse Dynamics for a 5-DOF Parallel Kinematic Polishing Machine
,”
Int. J. Adv. Rob. Syst.
,
10
, pp.
1
21
.10.5772/54966
30.
Gallet
,
M.
,
Nawratil
,
G.
, and
Schicho
,
J.
,
2014
, “
Bond Theory for Pentapods and Hexapods
,”
J. Geom.
, epub.10.1007/s00022-014-0243-1
31.
Borràs
,
J.
,
Thomas
,
F.
, and
Torras
,
C.
,
2011
, “
Architectural Singularities of a Class of Pentapods
,”
Mech. Mach. Theory
,
46
(
8
), pp.
1107
1120
.10.1016/j.mechmachtheory.2011.03.005
32.
Borràs
,
J.
,
Thomas
,
F.
, and
Torras
,
C.
,
2011
, “
Singularity-Invarient Families of Line-Plane 5-SPU Platforms
,”
IEEE Trans. Rob.
,
27
(
5
), pp.
837
848
.10.1109/TRO.2011.2158018
33.
Gao
,
F.
,
Peng
,
B.
,
Zhao
,
H.
, and
Li
,
W.
,
2006
, “
A Novel 5-DOF Fully Parallel Kinematic Machine Tool
,”
Int. J. Adv. Manuf. Technol.
,
31
(
1–2
), pp.
201
207
.10.1007/s00170-005-0171-1
34.
Suh
,
S.-H.
,
Lee
,
E.-S.
, and
Jung
,
S.-Y.
,
1998
, “
Error Modeling and Measurement for the Rotary Table of Five-Axis Machine Tools
,”
Int. J. Adv. Manuf. Technol.
,
14
(
9
), pp.
656
663
.10.1007/BF01192286
35.
Zhang
,
Y.
,
Yang
,
J.
, and
Zhang
,
K.
,
2013
, “
Geometric Error Measurement and Compensation for Rotary Table of Five-Axis Machine Tool With Double Ballbar
,”
Int. J. Adv. Manuf. Technol.
,
65
(
1–4
), pp.
275
281
.10.1007/s00170-012-4166-4
36.
Hartenberg
,
R. S.
, and
Denavit
,
J.
,
1964
,
Kinematic Synthesis of Linkages
,
McGraw-Hill
,
New York
.
37.
Bonev
,
I. A.
, and
Ryu
,
J.
,
2001
, “
A New Approach to Orientation Workspace Analysis of 6-DOF Parallel Manipulators
,”
Mech. Mach. Theory
,
36
(
1
), pp.
15
28
.10.1016/S0094-114X(00)00032-X
38.
Merlet
,
J.-P.
,
1996
, “
Redundant Parallel Manipulators
,”
Lab. Rob. Autom.
,
8
(
1
), pp.
17
24
.10.1002/(SICI)1098-2728(1996)8:1<17::AID-LRA3>3.0.CO;2-#
39.
Zhang
,
D.
,
2010
,
Parallel Robotic Machine Tools
,
Springer
,
New York
.
40.
Yue
,
Y.
,
Gao
,
F.
,
Zhao
,
X.
, and
Ge
,
Q. J.
,
2009
, “
Relationship Among Input-Force, Payload, Stiffness, and Displacement of a 6-DOF Perpendicular Parallel Micromanipulator
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
011007
.10.1115/1.4000525
41.
Mahmoodi
,
M.
,
Mills
,
J. K.
, and
Benhabib
,
B.
,
2013
, “
Configuration-Dependency of Structural Vibration Response Amplitudes in Parallel Kinematic Mechanisms
,”
2nd International Conference on Virtual Machining Process Technology (VMPT)
, Hamilton, ON, Canada, May 13–17.
You do not currently have access to this content.