The well-established methodology for slider-crank function generation states that five precision points can be achieved without structural error. The resulting designs, however, do not necessarily satisfy all of the kinematic requirements for designing a slider-crank linkage used in common machine applications such as driving the ram of a mechanical press. First, linkage solutions to the five precision point synthesis problem may need to change circuits to reach the precision points. Second, there is no guarantee that the input crank is fully rotatable. This paper presents a modification to the function generation synthesis methodology that reveals a continuum of defect-free, slider-crank solutions for four precision points. Additionally, the methodology allows the specification of velocity or acceleration at the precision points. Although smaller accelerations at a point of zero slide velocity are associated with longer dwell, a point having zero velocity and acceleration is shown not to be possible. Examples are included to illustrate this kinematic synthesis methodology.

References

References
1.
Erdman
,
A.
,
Sandor
,
G.
, and
Kota
,
S.
,
2001
,
Mechanism Design: Analysis and Synthesis
, Vol.
1
,
Prentice Hall
, Upper Saddle River, NJ.
2.
Erdman
,
A.
, and
Sandor
,
G.
,
1984
,
Advanced Mechanism Design: Analysis and Synthesis
, Vol.
2
,
Prentice-Hall
, Upper Saddle River, NJ.
3.
McCarthy
,
J.
, and
Soh
,
G.
,
2010
,
Geometric Design of Linkages
(Interdisciplinary Applied Mathematics),
Springer
, New York.
4.
Waldron
,
K.
, and
Kinzel
,
G.
,
2004
,
Kinematics, Dynamics, and Design of Machinery
,
Wiley
, New York.
5.
Freudenstein
,
F.
,
1954
, “
An Analytical Approach to the Design of Four-Link Mechanisms
,”
Trans. ASME
,
76
(
3
), pp.
483
492
.
6.
Freudenstein
,
F.
,
1959
, “
Structural Error Analysis in Plane Kinematic Synthesis
,”
J. Eng. Ind.
,
81
(
1
), pp.
15
22
.
7.
Akcali
,
I.
, and
Dittrich
,
G.
,
1989
, “
Function Generation by Galerkin's Method
,”
Mech. Mach. Theory
,
24
(
1
), pp.
39
43
.10.1016/0094-114X(89)90081-5
8.
Liu
,
Z.
, and
Angeles
,
J.
,
1994
, “
Optimization of Planar, Spherical and Spatial Function Generators Using Input-Output Curve Planning
,”
ASME J. Mech. Des.
,
116
(
3
), pp.
915
919
.10.1115/1.2919469
9.
Plecnik
,
M.
, and
McCarthy
,
J. M.
,
2011
, “
Five Position Synthesis of a Slider-Crank Function Generator
,”
ASME
Paper No. DETC2011-47581. 10.1115/DETC2011-47581
10.
Myszka
,
D. H.
, and
Murray
,
A. P.
,
2010
, “
Pole Arrangements That Introduce Prismatic Joints Into the Design Space of Four- and Five-Position Rigid-Body Synthesis
,”
Mech. Mach. Theory
,
45
(
9
), pp.
1314
1325
.10.1016/j.mechmachtheory.2010.04.001
11.
Tari
,
H.
, and
Su
,
H.-J.
,
2010
, “
Complete Solution to the Eight-Point Path Generation of Slider-Crank Four-Bar Linkages
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081003
.10.1115/1.4001878
12.
Russell
,
K.
, and
Sodhi
,
R. S.
,
2005
, “
On the Design of Slider-Crank Mechanisms. Part II: Multi-Phase Path and Function Generation
,”
Mech. Mach. Theory
,
40
(
3
), pp.
301
317
.10.1016/j.mechmachtheory.2004.07.010
13.
Figliolini
,
G.
,
Conte
,
M.
, and
Rea
,
P.
,
2012
, “
Algebraic Algorithm for the Kinematic Analysis of Slider-Crank/Rocker Mechanisms
,”
ASME J. Mech. Rob.
,
4
(
1
), p.
011003
.10.1115/1.4005527
14.
McLarnan
,
C.
,
1963
, “
Synthesis of Six-Link Plane Mechanisms by Numerical Analysis
,”
ASME J. Manuf. Sci. Eng.
,
85
(
1
), pp.
5
10
.10.1115/1.3667588
15.
Dhingra
,
A.
,
Cheng
,
J.
, and
Kohli
,
D.
,
1994
, “
Synthesis of Six-Link, Slider-Crank and Four-Link Mechanisms for Function, Path and Motion Generation Using Homotopy With m-Homogenization
,”
ASME J. Mech. Des.
,
116
(
4
), pp.
1122
1131
.10.1115/1.2919496
16.
Zanganeh
,
K. E.
, and
Angeles
,
J.
,
1993
, “
Symbolic Approach to the Input-Output Analysis of the Stephenson Six-Bar Linkage
,”
19th Annual ASME Design Automation Conference, Part 2
,
Albuquerque, NM
, Sept. 19–22, pp.
67
72
.
17.
Dhingra
,
A.
, and
Mani
,
N.
,
1993
, “
Finitely and Multiply Separated Synthesis of Link and Geared Mechanisms Using Symbolic Computing
,”
ASME J. Mech. Des.
,
115
(
3
), pp.
560
567
.10.1115/1.2919226
18.
Gonzalez-Palacios
,
M. A.
, and
Angeles
,
J.
,
1991
, “
SIXPAQ: A Comprehensive Software Package for Analysis and Synthesis of Six-Bar Dwell-Linkages
,”
ASME International Computers in Engineering Conference
,
Santa Clara, CA
, Aug. 18–22, Vol.
1
, pp.
309
314
.
19.
Chase
,
T. R.
, and
Mirth
,
J. A.
,
1993
, “
Circuits and Branches of Single-Degree-of-Freedom Planar Linkages
,”
ASME J. Mech. Des.
,
115
(
2
), pp.
223
230
.10.1115/1.2919181
20.
Balli
,
S. S.
, and
Chand
,
S.
,
2002
, “
Defects in Link Mechanisms and Solution Rectification
,”
Mech. Mach. Theory
,
37
(
9
), pp.
851
876
.10.1016/S0094-114X(02)00035-6
21.
Barker
,
C.
, and
Jeng
,
Y.-R.
,
1985
, “
Range of the Six Fundamental Position Angles of a Planar Four-Bar Mechanism
,”
Mech. Mach. Theory
,
20
(
4
), pp.
329
344
.10.1016/0094-114X(85)90038-2
22.
Mirth
,
J. A.
, and
Chase
,
T. R.
,
1993
, “
Circuit Analysis of Watt Chain Six-Bar Mechanisms
,”
ASME J. Mech. Des.
,
115
(
2
), pp.
214
222
.10.1115/1.2919180
23.
Davis
,
H.
,
Chase
,
T.
, and
Mirth
,
J.
,
1994
, “
Circuit Analysis of Stephenson Chain Six-Bar Mechanisms
,”
Trans. ASME
,
70
, pp.
349
358
.
24.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.10.1109/70.56660
25.
Grashof
,
F.
,
1883
,
Theoretische Maschinenlehre: Bd. Theorie der Getriebe und der Mechanischen Messinstrumente
,
L. Voss
, Leipzig, Germany.
26.
Xue
,
C.
,
Ting
,
K.-L.
, and
Wang
,
J.
,
2011
, “
Mobility Criteria of Planar Single-Loop N-Bar Chains With Prismatic Joints
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
011011
.10.1115/1.4003269
27.
Stumph
,
H. E.
, and
Murray
,
A. P.
,
2000
, “
Defect-Free Slider-Crank Function Generation for 4.5 Precision Points
,”
ASME
Paper No. DETC200/MECH-14070. 10.1115/DETC200/MECH-14070
28.
Wampler
,
C. W.
, and
Sommese
,
A. J.
,
2011
, “
Numerical Algebraic Geometry and Algebraic Kinematics
,”
Acta Numer.
,
20
, pp.
469
567
.10.1017/S0962492911000067
29.
Neumaier
,
A.
,
1990
,
Interval Methods for Systems of Equations
, Vol.
37
,
Cambridge University Press, New York.
30.
Roth
,
B.
,
1993
, “
Computations in Kinematics
,”
Computational Kinematics
,
Springer
, New York, pp.
3
14
.
You do not currently have access to this content.