The curvature theories for envelope curve of a straight line in planar motion and envelope ruled surface of a plane in spatial motion are systematically presented in differential geometry language. Based on adjoint curve and adjoint surface methods as well as quasi-fixed line and quasi-fixed plane conditions, the centrode and axode are taken as two logical starting-points to study kinematic and geometric properties of the envelope curve of a line in two-dimensional motion and the envelope surface of a plane in three-dimensional motion. The analogical Euler–Savary equation of the line and the analogous infinitesimal Burmester theories of the plane are thoroughly revealed. The contact conditions of the plane-envelope and some common surfaces, such as circular and noncircular cylindrical surface, circular conical surface, and involute helicoid are also examined, and then the positions and dimensions of different osculating ruled surfaces are given. Two numerical examples are presented to demonstrate the curvature theories.

References

References
1.
Freudenstein
,
F.
,
1965
, “
Higher Path-Curvature Analysis in Plane Kinematics
,”
ASME J. Eng. Ind.
,
86
(
1
), pp.
184
190
.10.1115/1.3670790
2.
VeldKamp
,
G. R.
,
1976
, “
On the Use of Dual Numbers, Vectors and Matrices in Instantaneous Spatial Kinematics
,”
Mech. Mach. Theory
,
11
(
2
), pp.
141
156
.10.1016/0094-114X(76)90006-9
3.
Tölke
,
J.
,
1976
, “
Contributions to the Theory of the Axes of Curvature
,”
Mech. Mach. Theory
,
11
(
2
), pp.
123
130
.10.1016/0094-114X(76)90004-5
4.
Kimbrell
,
J. E.
, and
Hunt
,
K. H.
,
1981
, “
Coupler Point-Paths and Line-Envelopes of 4-Bar Linkages in Asymptotic Configuration
,”
Mech. Mach. Theory
,
16
(
4
), pp.
311
320
.10.1016/0094-114X(81)90007-0
5.
Hsia
,
L. M.
, and
Yang
,
A. T.
,
1985
, “
On the Intrinsic Properties of Point Trajectories in Three-Dimensional Kinematics
,”
ASME J. Mech. Des.
,
107
(
3
), pp.
401
405
.10.1115/1.3260732
6.
Bokelbelg
,
E. H.
,
Hunt
,
K. H.
, and
Ridley
,
P. R.
,
1992
, “
Spatial Motion—I: Points of Inflection and the Differential Geometry of Screws
,”
Mech. Mach. Theory
,
27
(
1
), pp.
1
15
.10.1016/0094-114X(92)90053-K
7.
Ridley
,
P. R.
,
Hunt
,
K. H.
, and
Bokelbelg
,
E. H.
,
1992
, “
Spatial Motion—II: Acceleration and the Differential Geometry of Screws
,”
Mech. Mach. Theory
,
27
(
1
), pp.
17
35
.10.1016/0094-114X(92)90054-L
8.
McCarthy
,
J. M.
, and
Roth
,
B.
,
1982
, “
Instantaneous Properties of Trajectories Generated by Planar, Spherical and Spatial Rigid Body Motions
,”
ASME J. Mech. Des.
,
104
(
1
), pp.
39
50
.10.1115/1.3256321
9.
Schutter
,
J. D.
,
2010
, “
Invariant Description of Rigid Body Motion Trajectories
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
011004
.10.1115/1.4000524
10.
Roth
,
B.
,
2005
, “
Finding Geometric Invariants From Time-Based Invariants for Spherical and Spatial Motions
,”
ASME J. Mech. Des.
,
127
(
2
), pp.
227
231
.10.1115/1.1828462
11.
Soni
,
A. H.
,
Siddhanty
,
M. N.
, and
Ting
,
K. L.
,
1979
, “
Higher Order Planar Tangent-Line Envelop Curvature Theory
,”
ASME J. Mech. Des.
,
101
(
4
), pp.
563
568
.10.1115/1.3454101
12.
Hunt
,
K. H.
, and
Fichter
,
E. F.
,
1981
, “
Equations for Four-Bar Line-Envelopes
,”
ASME J. Mech. Des.
,
103
(
4
), pp.
743
749
.10.1115/1.3254981
13.
VeldKamp
,
G. R.
,
1983
, “
The Instantaneous Motion of a Line in a t-Position
,”
Mech. Mach. Theory
,
18
(
6
), pp.
439
444
.10.1016/0094-114X(83)90059-9
14.
McCarthy
,
J. M.
, and
Roth
,
B.
,
1981
, “
The Curvature Theory of Line Trajectory in Spatial Kinematics
,”
ASME J. Mech. Des.
,
103
(
4
), pp.
718
724
.10.1115/1.3254978
15.
McCarthy
,
J. M.
,
1987
, “
The Instantaneous Kinematics of Line Trajectories in Terms of a Kinematic Mapping of Spatial Rigid Motion
,”
ASME J. Mech. Des.
,
109
(
1
), pp.
95
100
.10.1115/1.3258792
16.
Ting
,
K. L.
, and
Soni
,
A. H.
,
1983
, “
Instantaneous Kinematic of a Plane in Space Motion
,”
ASME J. Mech. Des.
,
105
(
3
), pp.
552
559
.10.1115/1.3267394
17.
Ting
,
K. L.
, and
Soni
,
A. H.
,
1983
, “
Instantaneous Kinematic of a Plane in Spherical Motion
,”
ASME J. Mech. Des.
,
105
(
3
), pp.
560
567
.10.1115/1.3267395
18.
Hunt
,
K. H.
,
1978
,
Kinematic Geometry of Mechanisms
,
Clarendon Press
,
Oxford, UK
.
19.
Dong
,
H.
,
Ting
,
K.-L.
,
Yu
,
B.
,
Liu
,
J.
, and
Wang
,
D.
,
2012
, “
Differential Contact Path and Conjugate Properties of Planar Gearing Transmission
,”
ASME J. Mech. Des.
,
134
(
6
), p.
061010
.10.1115/1.4006654
20.
Stachel
,
H.
,
2000
, “
Instantaneous Spatial Kinematics and the Invariants of Axodes
,”
Symposium Commemorating the Legacy, Works, and Life of Sir Robert Stawell Ball Upon the 100th Anniversary of a Treatise on the Theory of Screws
, Cambridge, UK, July 9–11.
21.
Dooner
,
D. B.
, and
Griffis
,
M. W.
,
2007
, “
On Spatial Euler–Savary Equations for Envelopes
,”
ASME J. Mech. Des.
,
129
(
8
), pp.
866
875
.10.1115/1.2735339
22.
Wang
,
D.
,
Liu
,
J.
, and
Xiao
,
D.
,
1997
, “
Kinematic Differential Geometry of a Rigid Body in Spatial Motion—I: A New Adjoint Approach and Instantaneous Properties of a Point Trajectory in Spatial Kinematics
,”
Mech. Mach. Theory
,
32
(
4
), pp.
419
432
.10.1016/S0094-114X(96)00075-4
23.
Wang
,
D.
,
Liu
,
J.
, and
Xiao
,
D.
,
1997
, “
Kinematic Differential Geometry of a Rigid Body in Spatial Motion—II: A New Adjoint Approach and Instantaneous Properties of a Line Trajectory in Spatial Kinematics
,”
Mech. Mach. Theory
,
32
(
4
), pp.
433
444
.10.1016/S0094-114X(96)00076-6
24.
Wang
,
D.
,
Liu
,
J.
, and
Xiao
,
D.
,
1997
, “
Kinematic Differential Geometry of a Rigid Body in Spatial Motion—III: Distribution of Characteristic Lines in the Moving Body in Spatial Motion
,”
Mech. Mach. Theory
,
32
(
4
), pp.
445
457
.10.1016/S0094-114X(96)00077-8
25.
Wang
,
D.
,
1995
, “
Kinematic Differential Geometry of Mechanisms
,” Ph.D. thesis, Dalian University of Technology, Dalian, China.
26.
Wang
,
D.
,
Liu
,
J.
, and
Xiao
,
D.
,
2000
, “
Geometrical Characteristics of Some Typical Spatial Constraints
,”
Mech. Mach. Theory
,
35
(
10
), pp.
1413
1430
.10.1016/S0094-114X(99)00077-4
You do not currently have access to this content.