In this paper, we formulated a systematic design methodology for the design of planar six- and eight-bar slider mechanisms for motion generation applications that require more complex motion than the slider–crank mechanism. We show how two RR dyads can be synthesized and attached to planar PRR and PRR–3R chain for the dimensional synthesis of planar six- and eight-bar slider mechanisms, respectively. The results are 15 different types of one degree-of-freedom planar six- and eight-bar linkages with a prismatic joint at its base. We demonstrate the design process with the design of a multifunctional wheelchair that could transform its structure between a self-propelled wheelchair and a walking guide meant for outpatient rehabilitation purpose.

References

References
1.
Myszka
,
D. H.
, and
Murray
,
A. P.
,
2010
, “
Pole Arrangements That Introduce Prismatic Joints Into the Design Space of Four- and Five-Position Rigid-Body Synthesis
,”
Mech. Mach. Theory
,
45
(
9
), pp.
1314
1325
.10.1016/j.mechmachtheory.2010.04.001
2.
Lin
,
C. S.
, and
Erdman
,
A. G.
,
1987
, “
Dimensional Synthesis of Planar Triads for Six Positions
,”
Mech. Mach. Theory
,
22
(
5
), pp.
411
419
.10.1016/0094-114X(87)90058-9
3.
Chase
,
T. R.
,
Erdman
,
A. G.
, and
Riley
,
D. R.
,
1987
, “
Triad Synthesis for Up to 5 Design Positions With Applications to the Design of Arbitrary Planar Mechanisms
,”
ASME J. Mech. Des.
,
109
(
4
), pp.
426
434
.10.1115/1.3258813
4.
Subbian
,
T.
, and
Flugrad
,
D. R.
,
1994
, “
Six and Seven Position Triad Synthesis Using Continuation Methods
,”
ASME J. Mech. Des.
,
116
(
2
), pp.
660
665
.10.1115/1.2919429
5.
Farhang
,
K.
, and
Basu
,
P. S.
,
1994
, “
Kinematic Analysis and Synthesis of Three-Input, Eight-Bar Mechanisms Driven by Relatively Small Cranks
,”
ASME J. Mech. Des.
,
116
(
3
), pp.
930
936
.10.1115/1.2919472
6.
Mariappan
,
J.
, and
Krishnamurty
,
S.
,
1994
, “
A Generalized Exact Gradient Method for Mechanism Synthesis
,”
Mech. Mach. Theory
,
31
(
4
), pp.
413
421
.10.1016/0094-114X(95)00077-C
7.
Sancibrian
,
R.
,
Garca
,
P.
,
Viadero
,
F.
, and
Fernandez
,
A.
,
2006
, “
A General Procedure Based on Exact Gradient Determination in Dimensional Synthesis of Planar Mechanisms
,”
Mech. Mach. Theory
,
41
(
2
), pp.
212
229
.10.1016/j.mechmachtheory.2005.04.006
8.
Gatti
,
G.
, and
Mundo
,
D.
,
2007
, “
Optimal Synthesis of Six-Bar Crammed-Linkages for Exact Rigid-Body Guidance
,”
Mech. Mach. Theory
,
42
(
9
), pp.
1069
1081
.10.1016/j.mechmachtheory.2006.09.006
9.
Chen
,
C.
, and
Angeles
,
J.
,
2008
, “
A Novel Family of Linkages for Advanced Motion Synthesis
,”
Mech. Mach. Theory
,
43
(
7
), pp.
882
890
.10.1016/j.mechmachtheory.2007.06.007
10.
Soh
,
G. S.
, and
McCarthy
,
J. M.
,
2008
, “
The Synthesis of Six-Bar Linkages as Constrained Planar 3R Chains
,”
Mech. Mach. Theory
,
43
(
2
), pp.
160
170
.10.1016/j.mechmachtheory.2007.02.004
11.
Zhao
,
P.
,
Purwar
,
A.
, and
Ge
,
Q. J.
,
2013
, “
Task Driven Unified Synthesis of Planar Four-Bar and Six-Bar Linkages With Revolute and Prismatic Joints for Five Position Synthesis
,”
ASME
Paper No. DETC2013-13168.10.1115/DETC2013-13168
12.
Aviles
,
R.
,
Vallejo
,
J.
,
Aguirrebeitia
,
J.
,
de Bustos
,
I. F.
, and
Ajuria
,
G.
,
2010
, “
Optimization of Linkages for Generalized Rigid-Body Guidance Synthesis Based on Finite Element Models
,”
Mech. Mach. Theory
,
46
(
9
), pp.
721
731
.10.1016/j.finel.2010.03.010
13.
Myszka
,
D. H.
, and
Murray
,
A. P.
,
2010
, “
Singularity Free Revolute-Prismatic-Revolute and Spherical-Prismatic-Spherical Chains for Actuating Planar and Spherical Single Degree of Freedom Mechanisms
,”
ASME J. Mech. Rob.
,
4
(
1
), p.
011007
.10.1115/1.4005530
14.
Zhao
,
K.
,
Schmiedeler
,
J. P.
, and
Murray
,
A. P.
,
2013
, “
Kinematic Synthesis of Planar, Shape-Changing Rigid-Body Mechanisms With Prismatic Joints
,”
ASME
Paper No. DETC2011-48503.10.1115/DETC2011-48503
15.
Shamsudin
,
S. A.
,
Murray
,
A. P.
,
Myska
,
D. H.
, and
Schmiedeler
,
J. P.
,
2013
, “
Kinematic Synthesis of Planar, Shape-Changing, Rigid Body Mechanisms for Design Profiles With Significant Differences in Arc Length
,”
Mech. Mach. Theory
,
70
, pp.
425
440
.10.1016/j.mechmachtheory.2013.08.007
16.
Burmester
,
L.
,
1888
,
Lehrbuch der Kinematik
,
Felix
,
A.
, ed.,
Verlag
,
Leipzig, Germany
.
17.
Sandor
,
G. N.
, and
Erdman
,
A. G.
,
1984
,
Advanced Mechanism Design: Analysis and Synthesis
, Vol.
2
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
18.
McCarthy
,
J. M.
and
Soh
,
G. S.
,
2010
,
Geometric Design of Linkages
(Interdisciplinary Applied Mathematics),
2nd ed.
,
Springer-Verlag
,
New York
.
19.
Tsai
,
L. W.
,
2001
,
Enumeration of Kinematic Structures According to Function
,
CRC Press
,
Boca Raton, FL
.
20.
Jin
,
Z.
, and
Ge
,
Q. J.
,
2010
, “
Constrained Motion Interpolation for Planar Open Kinematic Chains
,”
Mech. Mach. Theory
,
45
(
7
), pp.
1721
1732
.10.1016/j.mechmachtheory.2010.06.003
21.
Cooper
,
R. A.
,
1995
,
Rehabilitation Engineering Applied to Mobility and Manipulation
,
Institute of Physics Publishing
,
Bristol, UK
.
22.
Soh
,
G. S.
, and
McCarthy
,
J. M.
,
2008
, “
Assessment Criteria for Conceptual Design of Six-Bar Linkage
,”
ASME
Paper No. DETC2007-35588.10.1115/DETC2007-35588
You do not currently have access to this content.