Over its lifetime, the hexapedal robot RHex has shown impressive performance. Combining preflexes with a range of control schemes, various behaviors such as leaping, running, bounding, as well as running on rough terrain have been exhibited. In order to better determine the extent to which the passive and mechanical aspects of the design contribute to performance, a new version of the hexapedal spring-loaded inverted pendulum (SLIP)-based runner with a novel minimal control scheme is developed and tested. A unique drive mechanism is utilized to allow for operation (including steering) of the robot with only two motors. The simplified robot operates robustly and it exhibits walking, SLIP-like running, or high-speed motion profiles depending only on the actuation frequency. In order to better capture the critical nonlinear properties of the robot’s legs, a more detailed dynamic model termed R2-SLIP is presented. The performance of the robot is compared to the basic SLIP, the R-SLIP, and this new R2-SLIP model. Furthermore, these results suggest that, in the future, the R2-SLIP model can be used to tune/improve the design of the leg compliance and noncircular gears to optimize performance.

References

References
1.
Raibert
,
M.
,
2000
,
Legged Robots That Balance
,
MIT
,
Cambridge, MA
.
2.
Poulakakis
,
I.
,
Smith
,
J. A.
, and
Buehler
,
M.
,
2005
, “
Modeling and Experiments of Untethered Quadrupedal Running With a Bounding Gait: The Scout II Robot
,”
Int. J. Rob. Res.
,
24
(
4
), pp.
239
256
.10.1177/0278364904050917
3.
Buehler
,
M.
,
Battaglia
,
R.
,
Cocosco
,
A.
,
Hawker
,
G.
,
Sarkis
,
J.
, and
Yamazaki
,
K.
,
1998
, “
SCOUT: A Simple Quadruped That Walks, Climbs, and Runs
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Leuven, Belgium, May 16–20, pp.
1707
1712
.10.1109/ROBOT.1998.677408
4.
Kimura
,
H.
,
Fukuoka
,
Y.
, and
Cohen
,
A. H.
,
2007
, “
Adaptive Dynamic Walking of a Quadruped Robot on Natural Ground Based on Biological Concepts
,”
Int. J. Rob. Res.
,
26
(
5
), pp.
475
490
.10.1177/0278364907078089
5.
Fukuoka
,
Y.
,
Kimura
,
H.
, and
Cohen
,
A. H.
,
2003
, “
Adaptive Dynamic Walking of a Quadruped Robot on Irregular Terrain Based on Biological Concepts
,”
Int. J. Rob. Res.
,
22
(
3–4
), pp.
187
202
.10.1177/0278364903022003004
6.
Cham
,
J. G.
,
Karpick
,
J. K.
, and
Cutkosky
,
M. R.
,
2004
, “
Stride Period Adaptation of a Biomimetic Running Hexapod
,”
Int. J. Rob. Res.
,
23
(
2
), pp.
141
153
.10.1177/0278364904041323
7.
Kim
,
S.
,
Clark
,
J. E.
, and
Cutkosky
,
M. R.
,
2006
, “
iSprawl: Design and Tuning for High-Speed Autonomous Open-Loop Running
,”
Int. J. Rob. Res.
,
25
(
9
), pp.
903
912
.10.1177/0278364906069150
8.
Cham
,
J. G.
,
Bailey
,
S. A.
,
Clark
,
J. E.
,
Full
,
R. J.
, and
Cutkosky
,
M. R.
,
2002
, “
Fast and Robust: Hexapedal Robots Via Shape Deposition Manufacturing
,”
Int. J. Rob. Res.
,
21
(
10–11
), pp.
869
882
.10.1177/0278364902021010837
9.
Saranli
,
U.
,
Buehler
,
M.
, and
Koditschek
,
D. E.
,
2001
, “
RHex: A Simple and Highly Mobile Hexapod Robot
,”
Int. J. Rob. Res.
,
20
(
7
), pp.
616
631
.10.1177/02783640122067570
10.
Saranli
,
U.
,
Rizzi
,
A. A.
, and
Koditschek
,
D. E.
,
2004
, “
Model-Based Dynamic Self-Righting Maneuvers for a Hexapedal Robot
,”
Int. J. Rob. Res.
,
23
(
9
), pp.
903
918
.10.1177/0278364904045594
11.
Lin
,
P. C.
,
Komsuoglu
,
H.
, and
Koditschek
,
D. E.
,
2005
, “
A Leg Configuration Measurement System for Full-Body Pose Estimates in a Hexapod Robot
,”
IEEE Trans. Rob.
,
21
(
3
), pp.
411
422
.10.1109/TRO.2004.840898
12.
Lin
,
P. C.
,
Komsuoglu
,
H.
, and
Koditschek
,
D. E.
,
2006
, “
Sensor Data Fusion for Body State Estimation in a Hexapod Robot With Dynamical Gaits
,”
IEEE Trans. Rob.
,
22
(
5
), pp.
932
943
.10.1109/TRO.2006.878954
13.
Chou
,
Y. C.
,
Yu
,
W. S.
,
Huang
,
K. J.
, and
Lin
,
P. C.
,
2012
, “
Bio-Inspired Step-Climbing in a Hexapod Robot
,”
Bioinspiration Biomimetics
,
7
(
3
), p.
036008
.10.1088/1748-3182/7/3/036008
14.
Burden
,
S.
,
Clark
,
J.
,
Weingarten
,
J.
,
Komsuoglu
,
H.
, and
Koditschek
,
D. E.
,
2007
, “
Heterogeneous Leg Stiffness and Roll in Dynamic Running
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Rome, Apr. 10–14, pp.
4645
4652
.10.1109/ROBOT.2007.364195
15.
Galloway
,
K. C.
,
Clark
,
J. E.
,
Yim
,
M.
, and
Koditschek
,
D. E.
,
2011
, “
Experimental Investigations Into the Role of Passive Variable Compliant Legs for Dynamic Robotic Locomotion
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, May 9–13, pp.
1243
1249
.10.1109/ICRA.2011.5979941
16.
Haldane
,
D. W.
,
Peterson
,
K. C.
,
Garcia Bermudez
,
F. L.
, and
Fearing
,
R. S.
,
2013
, “
Animal-Inspired Design and Aerodynamic Stabilization of a Hexapedal Millirobot
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Karlsruhe, Germany, May 6–10, pp.
3279
3286
.10.1109/ICRA.2013.6631034
17.
Alexander
,
R. M.
,
1988
,
Elastic Mechanisms in Animal Movement
,
Cambridge University Press
,
Cambridge, UK
.
18.
McMahon
,
T. A.
,
1988
, “
Elastic Mechanisms in Animal Moment—Alexander, R. M.
,”
Nature
,
336
(
6199
), p.
530
.10.1038/336530a0
19.
Blickhan
,
R.
,
1989
, “
The Spring Mass Model for Running and Hopping
,”
J. Biomech.
,
22
(
11–12
), pp.
1217
1227
.10.1016/0021-9290(89)90224-8
20.
Holmes
,
P.
,
Full
,
R. J.
,
Koditschek
,
D.
, and
Guckenheimer
,
J.
,
2006
, “
The Dynamics of Legged Locomotion: Models, Analyses, and Challenges
,”
SIAM Rev.
,
48
(
2
), pp.
207
304
.10.1137/S0036144504445133
21.
Full
,
R. J.
, and
Koditschek
,
D. E.
,
1999
, “
Templates and Anchors: Neuromechanical Hypotheses of Legged Locomotion on Land
,”
J. Exp. Biol.
,
202
(
23
), pp.
3325
3332
, available at: http://jeb.biologists.org/content/202/23/3325.full.pdf+html
22.
Altendorfer
,
R.
,
Moore
,
N.
,
Komsuolu
,
H.
,
Buehler
,
M.
,
Brown
,
H. B.
,
McMordie
,
D.
,
Saranli
,
U.
,
Full
,
R.
, and
Koditschek
,
D. E.
,
2001
, “
RHex: A Biologically Inspired Hexapod Runner
,”
Auton. Rob.
,
11
(
3
), pp.
207
213
.10.1023/A:1012426720699
23.
Huang
,
C. K.
,
Huang
,
K. J.
, and
Lin
,
P. C.
,
2013
, “
Rolling SLIP Model Based Running on a Hexapod Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Tokyo, Nov. 3–7, pp.
5608
5614
.10.1109/IROS.2013.6697169
24.
Huang
,
K. J.
,
Chen
,
S. C.
,
Tsai
,
M. C.
,
Liang
,
F. Y.
,
Hsueh
,
Y. H.
, and
Lin
,
P. C.
,
2012
, “
A Bio-Inspired Hexapod Robot With Noncircular Gear Transmission System
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Kachsiung, Taiwan, July 11–14, pp.
33
38
.10.1109/AIM.2012.6266042
25.
Abbas
,
J.
, and
Full
,
R.
,
2000
, “
Neuromechanical Interaction in Cyclic Movements
,”
Biomechanics and Neural Control of Posture and Movement
,
J.
Winters
and
P.
Crago
, eds.,
Springer
,
New York
, pp.
177
191
.
26.
Full
,
R.
,
Farley
,
C.
, and
Winters
,
J.
,
2000
, “
Musculoskeletal Dynamics in Rhythmic Systems: A Comparative Approach to Legged Locomotion
,”
Biomechanics and Neural Control of Posture and Movement
,
J.
Winters
, and
P.
Crago
, eds.,
Springer
,
New York
, pp.
192
205
.
27.
Spenko
,
M. J.
,
Haynes
,
G. C.
,
Saunders
,
J. A.
,
Cutkosky
,
M. R.
,
Rizzi
,
A. A.
,
Full
,
R. J.
, and
Koditschek
,
D. E.
,
2008
, “
Biologically Inspired Climbing With a Hexapedal Robot
,”
J. Field Rob.
,
25
(
4–5
), pp.
223
242
.10.1002/rob.20238
28.
Poulakakis
,
I.
, and
Grizzle
,
J. W.
,
2009
, “
The Spring Loaded Inverted Pendulum as the Hybrid Zero Dynamics of an Asymmetric Hopper
,”
IEEE Trans. Autom. Control
,
54
(
8
), pp.
1779
1793
.10.1109/TAC.2009.2024565
29.
Chen
,
X.
,
Gao
,
F.
,
Qi
,
C.
,
Tian
,
X.
, and
Zhang
,
J.
,
2014
, “
Spring Parameters Design for the New Hydraulic Actuated Quadruped Robot
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021003
.10.1115/1.4025754
30.
Galloway
,
K. C.
,
Clark
,
J. E.
, and
Koditschek
,
D. E.
,
2013
, “
Variable Stiffness Legs for Robust, Efficient, and Stable Dynamic Running
,”
ASME J. Mech. Rob.
,
5
(
1
), p.
011009
.10.1115/1.4007843
31.
Rummel
,
J.
, and
Seyfarth
,
A.
,
2008
, “
Stable Running With Segmented Legs
,”
Int. J. Rob. Res.
,
27
(
8
), pp.
919
934
.10.1177/0278364908095136
32.
Jae Yun
,
J.
, and
Clark
,
J. E.
,
2009
, “
Dynamic Stability of Variable Stiffness Running
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Kobe, Japan, May 12–17, pp.
1756
1761
.10.1109/ROBOT.2009.5152810
33.
Huang
,
K. J.
,
Huang
,
C. K.
, and
Lin
,
P. C.
,
2014
, “
A Simple Running Model With Rolling Contact and Its Role as a Template for Dynamic Locomotion on a Hexapod Robot
,”
Bioinspiration Biomimetics
,
9
(
4
), p.
046004
.10.1088/1748-3182/9/4/046004
34.
Seipel
,
J. E.
, and
Holmes
,
P.
,
2007
, “
A Simple Model for Clock-Actuated Legged Locomotion
,”
Regular Chaotic Dyn.
,
12
(
5
), pp.
502
520
.10.1134/S1560354707050048
35.
Jae Yun
,
J.
, and
Clark
,
J. E.
,
2011
, “
Effect of Rolling on Running Performance
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, May 9–13, pp.
2009
2014
.10.1109/ICRA.2011.5980433
36.
Ankaralı
,
M. M.
,
Saygıner
,
E.
,
Yazıcıoğlu
,
Y.
,
Saranli
,
A.
, and
Saranli
,
U.
,
2012
, “
A Dynamic Model of Running With a Half-Circular Compliant Leg
,”
15th International Conference on Climbing and Walking Robots (CLAWAR)
,
Baltimore, MD, July 23–26
, pp.
425
432
.
37.
Peuker
,
F.
,
Seyfarth
,
A.
, and
Grimmer
,
S.
,
2012
, “
Inheritance of SLIP Running Stability to a Single-Legged and Bipedal Model With Leg Mass and Damping
,”
4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics
(
BioRob
), Rome, June 24–27, pp.
395
400
.10.1109/BioRob.2012.6290742
38.
Ankarali
,
M. M.
, and
Saranli
,
U.
,
2011
, “
Control of Underactuated Planar Pronking Through an Embedded Spring-Mass Hopper Template
,”
Auton. Rob.
,
30
(
2
), pp.
217
231
.10.1007/s10514-010-9216-x
39.
Heglund
,
N. C.
,
Taylor
,
C. R.
, and
McMahon
,
T. A.
,
1974
, “
Scaling Stride Frequency and Gait to Animal Size: Mice to Horses
,”
Science
,
186
(
4169
), pp.
1112
1113
.10.1126/science.186.4169.1112
40.
Moore
,
E. Z.
,
Campbell
,
D.
,
Grimminger
,
F.
, and
Buehler
,
M.
,
2002
, “
Reliable Stair Climbing in the Simple Hexapod RHex
,”
Proceedings of the International Conference on Robotics and Automation
, pp.
2222
2227
.
41.
Campbell
,
D.
, and
Buehler
,
M.
,
2003
, “
Stair Descent in the Simple Hexapod RHex
,”
International Conference on Robotics and Automation
(
ICRA '03
), Taipei, Taiwan, Sept. 14–19, pp.
1380
1385
.10.1109/ROBOT.2003.1241784
42.
McMordie
,
D.
, and
Buehler
,
M.
,
2001
, “
Towards Pronking With a Hexapod Robot
,”
4th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines
,
Karlsruhe, Germany, Sept. 24–26
, pp.
659
666
.
43.
Neville
,
N.
,
Buehler
,
M.
, and
Sharf
,
I.
,
2006
, “
A Bipedal Running Robot With One Actuator Per Leg
,”
IEEE International Conference on Robotics and Automation
(
ICRA 2006
), Orlando, May 15–19, pp.
848
853
.10.1109/ROBOT.2006.1641815
44.
Johnson
,
A. M.
, and
Koditschek
,
D. E.
,
2013
, “
Toward a Vocabulary of Legged Leaping
,”
IEEE International Conference on Robotics and Automation
(
ICRA
),
Karlsruhe, Germany, May 6–10
, pp.
2553
2560
.10.1109/ICRA.2013.6630928
45.
Chou
,
Y. C.
,
Huang
,
K. J.
,
Yu
,
W. S.
, and
Lin
,
P. C.
,
2015
, “
Model-Based Development of Leaping in a Hexapod Robot
,”
IEEE Trans. Rob.
,
31
(
1
), pp.
40
54
.10.1109/TRO.2014.2376141
46.
Litvin
,
F. L.
,
Fuentes-Aznar
,
A.
,
Gonzalez-Perez
,
I.
, and
Hayasaka
,
K.
,
2009
,
Noncircular Gears: Design and Generation
,
Cambridge University Press
,
New York
.
47.
Chen
,
S. C.
,
Huang
,
K. J.
,
Chen
,
W. H.
,
Shen
,
S. Y.
,
Li
,
C. H.
, and
Lin
,
P. C.
,
2014
, “
Quattroped: A Leg-Wheel Transformable Robot
,”
IEEE/ASME Trans. Mechatronics
,
19
(
2
), pp.
730
742
.10.1109/TMECH.2013.2253615
48.
Jun
,
J. Y.
, and
Clark
,
J. E.
,
2012
, “
A Reduced-Order Dynamical Model for Running With Curved Legs
,”
IEEE International Conference on Robotics and Automation
(
ICRA
),
St. Paul, MN, May 14–18
, pp.
2351
2357
.10.1109/ICRA.2012.6225267
You do not currently have access to this content.