Variable displacement pumps are a key component to a variety of mobile and industrial hydraulic systems, yet the efficiency of existing pump architectures is poor at low displacement. As a solution to this issue, a new pump architecture is proposed that eliminates the planar hydrodynamic joints of a conventional architecture with rolling-element pin joints in an adjustable linkage. This new architecture uses an adjustable six-bar linkage that reaches true zero displacement and has the same top-dead-center (TDC) position regardless of displacement. In this work, the linkage kinematics and dynamics are discussed, an energy loss model is developed and used to drive design decisions of a first generation prototype, and experimental results are presented to validate the model. It is shown that this linkage-based, variable, positive displacement architecture shows promise as a highly efficient alternative to existing pump architectures across a wide range of displacements.

References

References
1.
Love
,
L.
,
Lanke
,
E.
, and
Alles
,
P.
,
2012
,
Estimating the Impact (Energy, Emissions and Economics) of the U.S. Fluid Power Industry
,
Oak Ridge National Laboratory (ORNL)
,
Oak Ridge, TN
.
2.
Salter
,
S.
, and
Rea
,
M.
,
1984
, “
Hydraulics for Wind
,”
European Wind Energy Conference
,
Hamburg
,
Germany
, Oct. 22–26, pp.
534
541
.
3.
Van de Ven
,
J. D.
,
Olson
,
M. W.
, and
Li
,
P. Y.
,
2008
, “
Development of a Hydro-Mechanical Hydraulic Hybrid Drive Train With Independent Wheel Torque Control for an Urban Passenger Vehicle
,”
National Conference on Fluid Power
,
Las Vegas, NV
, Mar. 11–15, pp.
503
514
.
4.
Comellas
,
M.
,
Pijuan
,
J.
,
Potau
,
X.
,
Nogués
,
M.
, and
Roca
,
J.
,
2013
, “
Efficiency Sensitivity Analysis of a Hydrostatic Transmission for an Off-Road Multiple Axle Vehicle
,”
Int. J. Automot. Technol.
,
14
(
1
), pp.
151
161
.10.1007/s12239-013-0017-z
5.
Williamson
,
C.
,
Zimmerman
,
J.
, and
Ivantysynova
,
M.
,
2008
, “
Efficiency Study of an Excavator Hydraulic System Based on Displacement-Controlled Actuators
,”
Bath/ASME Symposium on Fluid Power and Motion Control
, Bath, UK, Sept. 10–12, pp.
291
307
.
6.
Wieczorek
,
U.
, and
Ivantysynova
,
M.
,
2002
, “
Computer Aided Optimization of Bearing and Sealing Gaps in Hydrostatic Machines: The Simulation Tool CASPAR
,”
Int. J. Fluid Power
,
3
(
1
), pp.
7
20
.10.1080/14399776.2002.10781124
7.
Manring
,
N. D.
,
2003
, “
Valve-Plate Design for an Axial Piston Pump Operating at Low Displacements
,”
ASME J. Mech. Des.
,
125
(
1
), pp.
200
205
.10.1115/1.1541632
8.
Inaguma
,
Y.
, and
Hibi
,
A.
,
2007
, “
Reduction of Friction Torque in Vane Pump by Smoothing Cam Ring Surface
,”
Proc. Inst. Mech. Eng., Part C
,
221
(
5
), pp.
527
534
.10.1243/0954406JMES225
9.
Rannow
,
M.
,
Tu
,
H.
,
Li
,
P. Y.
, and
Chase
,
T.
,
2006
, “
Software Enabled Variable Displacement Pumps: Experimental Studies
,”
ASME
Paper No. IMECE2006-14973.10.1115/IMECE2006-14973
10.
Tu
,
H.
,
Rannow
,
M. B.
,
Wang
,
M.
,
Li
,
P. Y.
, and
Chase
,
T. R.
,
2009
, “
Modeling and Validation of a High Speed Rotary PWM On/Off Valve
,”
ASME
Paper No. DSCC2009-2763.10.1115/DSCC2009-2763
11.
M.
Wang
,
Li
,
P. Y.
,
Chase
,
T. R.
, and
Van de Ven
,
J. D.
,
2012
, “
Design, Modeling, and Validation of a High-Speed Rotary Pulse-Width-Modulation On/Off Hydraulic Valve
,”
ASME J. Dyn. Syst. Meas. Control
,
134
(
6
), p.
061002
.10.1115/1.4006621
12.
Ehsan
,
M.
,
Rampen
,
W.
, and
Salter
,
S.
,
2000
, “
Modeling of Digital-Displacement Pump-Motors and Their Application as Hydraulic Drives for Nonuniform Loads
,”
ASME J. Dyn. Syst. Meas. Control
,
122
(
1
), pp.
210
215
.10.1115/1.482444
13.
Linjama
,
M.
,
2011
, “
Digital Fluid Power: State of the Art
,”
12th Scandinavian International Conference on Fluid Power
, Tampere, Finland, May 18–20, pp.
331
353
.
14.
Yigen
,
C.
,
2012
, “
Control of a Digital Displacement Pump
,” Masters thesis, Department of Energy Technology, Aalborg University, Aalborg, Denmark.
15.
Pierce
,
J.
,
1914
, “
Variable Stroke Mechanism
,” U.S. Patent No. 1,112,832.
16.
Pouliot
,
H. N.
,
Delameter
,
W. R.
, and
Robinson
,
C. W.
,
1977
, “
A Variable Displacment Spark-Ignition Engine
,”
SAE
Paper No. 770114.10.4271/770114
17.
Nelson
,
C. D.
,
1985
, “
Variable Stroke Engine
,” U.S. Patent No. 4517931.
18.
Yamin
,
J. A. A.
, and
Dado
,
M. H.
,
2004
, “
Performance Simulation of a Four-Stroke Engine With Variable Stroke-Length and Compression Ratio
,”
Appl. Energy
,
77
(
4
), pp.
447
463
.10.1016/S0306-2619(03)00004-7
19.
Freudenstein
,
F.
, and
Maki
,
E. R.
,
1983
, “
Development of an Optimum Variable-Stroke Internal-Combustion Engine Mechanism From the Viewpoint of Kinematic Structure
,”
ASME J. Mech. Transm. Autom. Des.
,
105
(
2
), pp.
259
266
.10.1115/1.3258519
20.
Freudenstein
,
F.
, and
Maki
,
E.
,
1984
, “
Kinematic Structure of Mechanisms for Fixed and Variable-Stroke Axial-Piston Reciprocating Machines
,”
ASME J. Mech. Transm. Autom. Des.
,
106
(
3
), pp.
355
364
.10.1115/1.3267419
21.
Freudenstein
,
F.
, and
Maki
,
E. R.
,
1981
, “
Variable Displacement Piston Engine
,” U.S. Patent No. 4270495.
22.
Wilhelm
,
S.
, and
Van de Ven
,
J. D.
,
2011
, “
Synthesis of a Variable Displacement Linkage for a Hydraulic Transformer
,”
ASME
Paper No. DETC2011-47339.10.1115/DETC2011-47339
23.
Wilhelm
,
S. R.
, and
Van de Ven
,
J. D.
,
2013
, “
Design and Testing of an Adjustable Linkage for a Variable Displacement Pump
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041008
.10.1115/1.4025122
24.
Norton
,
R. L.
,
2008
,
Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines
,
McGraw-Hill
,
Boston
.
25.
Ivantysyn
,
J.
, and
Ivantysynova
,
M.
,
2001
,
Hydrostatic Pumps and Motors
,
Academic Books International
,
New Dehli, India
.
26.
Beardmore
,
R.
,
2013
, “
ROYMECH Friction Factors
,” accessed Nov. 26, 2013, http://www.roymech.co.uk/Useful_Tables/Tribology/co_of_frict.htm
27.
Beardmore
,
R.
,
2010
, “
Roller Bearing Friction
,” accessed Nov. 23, 2012, http://www.roymech.co.uk/Useful_Tables/Tribology/Bearing%20Friction.html
You do not currently have access to this content.