Mechanisms' instantaneous kinematics is modeled by linear and homogeneous mappings whose coefficient matrices are also meaningful to understand their static behavior through the virtual work principle. The analysis of these models is a mandatory step during design. The superposition principle can be used for building and studying linear and homogeneous models. Here, multi-degree-of-freedom (multi-DOF) spherical mechanisms are considered. Their instantaneous-kinematics model is written by exploiting instantaneous-pole-axes' (IPA) properties and the superposition principle. Then, this general model is analyzed and an exhaustive analytic and geometric technique to identify all their singular configurations is deduced. Eventually, the effectiveness of the deduced technique is shown with two relevant case studies.

References

References
1.
Davies
,
T. H.
,
1981
, “
Kirchhoff Circulation Law Applied to Multi-Loop Kinematic Chains
,”
Mech. Mach. Theory
,
16
(
3
), pp.
171
183
.10.1016/0094-114X(81)90033-1
2.
Zlatanov
,
D.
,
Fenton
,
R. G.
, and
Benhabib
,
B.
,
1995
, “
A Unifying Framework for Classification and Interpretation of Mechanism Singularities
,”
ASME J. Mech. Des.
,
117
(
4
), pp.
566
572
.10.1115/1.2826720
3.
Hunt
,
K. H.
,
1978
,
Kinematic Geometry of Mechanisms
,
Claredon Press
,
Oxford, UK
.
4.
Davidson
,
J. K.
, and
Hunt
,
K. H.
,
2007
,
Robots and Screw Theory
,
Oxford University Press
,
New York
.
5.
Gosselin
,
C. M.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Tran. Rob. Autom.
,
6
(
3
), pp.
281
290
.10.1109/70.56660
6.
Ma
,
O.
, and
Angeles
,
J.
,
1991
, “
Architecture Singularities of Platform Manipulators
,”
IEEE International Conference on Robotics and Automation
(
ICRA 1991
),
Sacramento, CA
, Apr. 9–11, pp.
1542
1547
.10.1109/ROBOT.1991.131835
7.
Di Gregorio
,
R.
,
2011
, “
A General Algorithm for Analytically Determining all the Instantaneous Pole Axis Locations in Single-DOF Spherical Mechanisms
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
225
(
9
), pp.
2062
2075
.10.1177/0954406211404894
8.
Di Gregorio
,
R.
,
2013
, “
Analytical Method for the Singularity Analysis and Eenumeration of the Singularity Conditions in Single-Degree-of-Freedom Spherical Mechanisms
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
227
(
8
), pp.
1830
1840
.10.1177/0954406212469328
9.
Lerner
,
D.
,
2007
, Lecture Notes on Linear Algebra,
Department of Mathematics, University of Kansas
,
Lawrence, KS
, p.
27
(Sec. 5.4), available at: http://www.math.ku.edu/open/LinearAlgebraNotes-Lerner/LANotes.pdf
10.
Chiang
,
C. H.
,
1988
,
Kinematics of Spherical Mechanisms
,
Cambridge University Press
,
New York
.
11.
Gosselin
,
C. M.
, and
Angeles
,
J.
,
1989
, “
The Optimum Kinematic Design of a Spherical Three-Degree-of-Freedom Parallel Manipulator
,”
ASME J. Mech. Des.
,
111
(
2
), pp.
202
207
.10.1115/1.3258984
12.
Gosselin
,
C. M.
,
Sefrioui
,
J.
, and
Richard
,
M. J.
,
1994
, “
On the Direct Kinematics of Spherical Three-Degree-of-Freedom Parallel Manipulators of General Architecture
,”
ASME J. Mech. Des.
,
116
(
2
), pp.
594
598
.10.1115/1.2919419
13.
Gosselin
,
C.
, and
Hamel
,
J.-F.
,
1994
, “
The Agile Eye: A High-Performance Three-Degree-of-Freedom Camera-Orienting Device
,”
IEEE International Conference on Robotics and Automation
(
ICRA 1994
), San Diego, CA, May 8–13, pp.
781
786
.10.1109/ROBOT.1994.351393
14.
Alizade
,
R. I.
,
Tagiyiev
,
N. R.
, and
Duffy
,
J.
,
1994
, “
A Forward and Reverse Displacement Analysis of an In-Parallel Spherical Manipulator
,”
Mech. Mach. Theory
,
29
(
1
), pp.
125
137
.10.1016/0094-114X(94)90025-6
15.
Gosselin
,
C. M.
,
Perreault
,
L.
, and
Vaillancourt
,
C.
,
1995
, “
Simulation and Computer-Aided Kinematic Design of Three-Degree-of-Freedom Spherical Parallel Manipulators
,”
J. Rob. Systems
,
12
(
12
), pp.
857
869
.10.1002/rob.4620121209
16.
Primrose
,
E.
,
Freudenstein
,
F.
, and
Roth
,
B.
,
1967
, “
Six-Bar Motion. II. The Stepenson-1 and Stephenson-2 Mechanism
,”
Arch. Ration. Mech. Anal.
,
24
(
1
), pp.
42
72
.
17.
Hernandez
,
S.
,
Bai
,
S.
, and
Angeles
,
J.
,
2006
, “
The Design of a Chain of Spherical Stephenson Mechanisms for a Gearless Robotic Pitch-Roll Wrist
,”
ASME J. Mech. Des.
,
128
(
3
), pp.
422
429
.10.1115/1.2167653
18.
Ting
,
K. L.
,
Xue
,
C.
,
Wang
,
J
, and
Currie
,
K.
,
2010
, “
Full Rotatability and Singularity of Six-Bar and Geared Five-Bar Linkages
,”
J. Mech. Rob.
,
2
(
1
), p.
011011
.10.1115/1.4000517
19.
McCarthy
,
J. M.
, and
Soh
,
G. S.
,
2011
, “
Multiloop Spherical Linkages
,”
Geometric Design of Linkages
,
Springer
,
New York
, pp.
231
251
.10.1007/978-1-4419-7892-9
20.
Gosselin
,
C. M.
, and
Wang
,
J.
,
2002
, “
Singularity Loci of a Special Class of Spherical Three-Degree-of-Freedom Parallel Mechanisms With Revolute Actuators
,”
Int. J. Rob. Res.
,
21
(
7
), pp.
649
659
.10.1177/027836402322023231
21.
Bonev
,
I. A.
, and
Gosselin
,
C.
,
2005
, “
Singularity Loci of Spherical Parallel Mechanisms
,”
IEEE International Conference on Robotics and Automation
(
ICRA 2005
),
Barcelona, Spain
, April 18–22, pp.
2968
2973
.10.1109/ROBOT.2005.1570563
22.
Di Gregorio
,
R.
,
2013
, “
Parallel Wrists: Limb Types, Singularities and New Perspectives
,”
Interdisciplinary Mechatronics
,
M. K.
Habib
and
J. P.
Davim
, eds.,
Wiley-ISTE
,
Hoboken, NJ
, pp.
113
144
.
You do not currently have access to this content.