The legged locomotion system of biological quadrupeds has proven to be the most efficient in natural, complex terrain. Particularly, horses' legs have been evolved to provide speed, endurance, and strength superior to any other animal of equal size. Quadruped robots, emulating their biological counterparts, could become the best choice for field missions in complex or natural environments; however, they should be provided with optimum performance against mobility, payload, and endurance. The design of the leg mechanism is of paramount importance to achieve the targeted performance, and in order to design a leg mechanism able to provide the robot with such agile capabilities nature is the best source for inspiration. In this work, key principles underlying horse legs' power capabilities have been extracted and translated to a biomimetic leg concept. Afterwards, a real prototype has been designed following the biomimetic concept proposed. A key element in the biomimetic concept is the multifunctionality of the natural musculotendinous system, which has been mimicked by combining series elastic actuation and passive elements. This work provides an assessment of the benefits that bio-inspired solutions can provide versus the purely engineering approaches. The experimental evaluation of the bio-inspired prototype shows an improvement on the performance compared to a leg design based on purely engineering principles.

References

References
1.
Thornhill
,
L. D.
,
Walls
,
A.
,
Arkin
,
R. C.
,
Beno
,
J. H.
,
Bergh
,
C.
,
Bresie
,
D.
,
Giovannetti
,
A.
,
Gothard
,
B. M.
,
Matthies
,
L. H.
,
Nogueiro
,
P.
,
Scanlon
,
J.
,
Scott
,
R.
,
Simon
,
M.
,
Smith
,
W.
, and
Waldron
,
K. J.
,
2003
, “
Design of an Agile Unmanned Combat Vehicle—A Product of the DARPA UGCV Program
,”
Proc. SPIE
,
5083
, pp.
258
270
.
2.
Griffin
,
T. M.
,
Kram
,
R.
,
Wickler
,
S. J.
, and
Hoyt
,
D. F.
,
2004
, “
Biomechanical and Energetic Determinants of the Walk-Trot Transition in Horses
,”
J. Exp. Biol.
,
207
(
24
), pp.
4215
4223
.10.1242/jeb.01277
3.
Alexander
,
R. M.
, and
Jayes
,
A. S.
,
1983
, “
A Dynamic Similarity Hypothesis for the Gaits of Quadrupedal Mammals
,”
J. Zool.
,
201
(
1
), pp.
135
152
.10.1111/j.1469-7998.1983.tb04266.x
4.
Garcia
,
E.
,
Arevalo
,
J.
,
Muñoz
,
G.
, and
Gonzalez-de-Santos
,
P.
,
2011
, “
Combining Series-Elastic Actuation and Magneto-Rheological Damping for the Control of Agile Locomotion
,”
Rob. Auton. Syst.
,
59
(
10
), pp.
827
839
.10.1016/j.robot.2011.06.006
5.
Poulakakis
,
I.
,
Smith
,
J. A.
, and
Buehler
,
M.
,
2005
, “
Modeling and Experiments of Untethered Quadrupedal Running With a Bounding Gait: The Scout II Robot
,”
Int. J. Rob. Res.
,
24
(
4
), pp.
239
256
.10.1177/0278364904050917
6.
Hodoshima
,
R.
,
Doi
,
T.
,
Fukuda
,
Y.
,
Hirose
,
S.
,
Okamoto
,
T.
, and
Mori
,
J.
,
2007
, “
Development of a Quadruped Walking Robot TITAN XI for Steep Slope Operation—Step Over Gait to Avoid Concrete Frames on Steep Slopes
,”
J. Rob. Mechatronics
,
19
(
1
), pp.
13
26
.
7.
Murphy
,
M. P.
,
Saunders
,
A.
,
Moreira
,
C.
,
Rizzi
,
A. A.
, and
Raibert
,
M.
,
2011
, “
The LittleDog Robot
,”
Int. J. Rob. Res.
,
30
(
2
), pp.
145
149
.10.1177/0278364910387457
8.
Fukuoka
,
Y.
,
Katabuchi
,
H.
, and
Kimura
,
H.
,
2010
, “
Dynamic Locomotion of Quadrupeds Tekken3&4 Using Simple Navigation System
,”
J. Rob. Mechatronics
,
22
(
1
), pp.
36
42
.
9.
Singh
,
S. P. N.
, and
Waldron
,
K. J.
,
2006
, “
Towards High-Fidelity On-Board Attitude Estimation for Legged Locomotion Via a Hybrid Range and Inertial Approach
,”
Experimental Robots IX (Springer Tracts in Advanced Robotics, Vol. 21)
,
M. H.
Ang
and
O.
Khatib
, eds.,
Springer
, Berlin, pp.
589
598
.
10.
Raibert
,
M.
,
Blankespoor
,
K.
,
Nelson
,
G.
, and
Playter
,
R.
,
2008
, “
BigDog, The Rough-Terrain Quadruped Robot
,”
17th World Congress International Federation of Automation Control (IFAC)
, Seoul, South Korea, July 6–11, pp. 10822–10825.
11.
Havoutis
,
I.
,
Semini
,
C.
,
Buchli
,
J.
, and
Caldwell
,
D. G.
,
2013
, “
Quadrupedal Trotting With Active Compliance
,”
IEEE International Conference on Mechatronics
(
ICM
), Vicenza, Italy, Feb. 27–Mar. 1, pp.
610
616
.10.1109/ICMECH.2013.6519112
12.
Hutter
,
M.
,
Remy
,
C. D.
,
Hoepflinger
,
M. A.
, and
Siegwart
,
R.
,
2013
, “
Efficient and Versatile Locomotion With Highly Compliant Legs
,”
IEEE/ASME Trans. Mechatronics
,
18
(
2
), pp.
449
458
.10.1109/TMECH.2012.2222430
13.
Ananthanarayanan
,
A.
,
Azadi
,
M.
, and
Kim
,
S.
,
2012
, “
Towards the Bio-Inspired Legs Design for High Speed Running
,”
Bioinspiration Biomimetics
,
7
(
4
), p.
046005
.10.1088/1748-3182/7/4/046005
14.
Arikawa
,
K.
, and
Hirose
,
S.
,
2007
, “
Mechanical Design of Walking Machines
,”
Philos. Trans. R. Soc. A
365
(
1850
), pp.
171
183
.10.1098/rsta.2006.1888
15.
Hildebrand
,
M.
,
1987
, “
The Mechanics of Horse Legs
,”
Am. Sci.
,
75
(
6
), pp.
594
601
.
16.
Bar-Cohen
,
Y.
, and
Breazeal
,
C.
,
2003
,
Biologically Inspired Intelligent Robots
,
SPIE Press
, Bellingham, WA.
17.
Pontzer
,
H.
,
2007
, “
Effective Limb Length and the Scaling of Locomotor Cost in Terrestrial Animals
,”
J. Exp. Biol.
,
210
(
10
), pp.
1752
1761
.10.1242/jeb.002246
18.
American Institute of Architects,
2000
,
Architectural Graphic Standards (Version 3)
,
Wiley
,
New York
.
19.
Nauwelaerts
,
S.
,
Allen
,
W. A.
,
Lane
,
J. M.
, and
Clayton
,
H. M.
,
2011
, “
Inertial Properties of Equine Limb Segments
,”
J. Anat.
,
218
(
5
), pp.
500
509
.10.1111/j.1469-7580.2011.01353.x
20.
Gunn
,
H.
,
1983
, “
Morphological Attributes Associated With Speed of Running in Horses
,”
Equine Exercise Physiology
,
D.
Snow
,
S.
Persson
, and
R.
Rose
, eds.,
Burlington Press
,
Cambridge, UK
, pp.
271
274
.
21.
Alexander
,
R. M.
,
1988
,
Elastic Mechanisms in Animal Movement
,
Cambridge University Press,
,
Cambridge, UK
.
22.
Rapoport
,
S.
,
Mizrahi
,
J.
,
Kimmel
,
E.
,
Verbitsky
,
O.
, and
Isakov
,
E.
,
2003
, “
Constant and Variable Stiffness and Damping of the Leg Joints in Human Hopping
,”
ASME J. Biomech. Eng.
,
125
(
4
), pp.
507
514
.10.1115/1.1590358
23.
Buchner
,
H. H. F.
,
Savelberg
,
H. H. C. M.
,
Schamhardt
,
H. C.
, and
Barneveld
,
A.
,
1997
, “
Inertial Properties of Dutch Warmblood Horses
,”
J. Biomech.
,
30
(
6
), pp.
653
658
.10.1016/S0021-9290(97)00005-5
24.
Gonzalez de Santos
,
P.
,
Garcia
,
E.
, and
Estremera
,
J.
,
2006
,
Quadrupedal Locomotion: An Introduction to the Control of Four-Legged Robots
,
Springer
,
London
.
25.
Dickinson
,
M.
,
Farley
,
C.
,
Full
,
R.
,
Koehl
,
M.
,
Kram
,
R.
, and
Lehman
,
S.
,
2000
, “
How Animals Move: An Integrative View
,”
Science
,
288
(5463), pp.
100
106
.10.1126/science.288.5463.100
26.
Hyon
,
S.-H.
,
2009
, “
A Motor Control Strategy With Virtual Musculoskeletal Systems for Compliant Anthropomorphic Robots
,”
IEEE/ASME Trans. Mechatronics
,
14
(
6
), pp.
677
688
.10.1109/TMECH.2009.2033117
27.
Anderson
,
I.
,
Ieropoulos
,
I.
,
McKay
,
T.
,
O'Brien
,
B.
, and
Melhuish
,
C.
,
2011
, “
Power for Robotic Artificial Muscles
,”
IEEE/ASME Trans. Mechatronics
,
16
(
1
), pp.
107
111
.10.1109/TMECH.2010.2090894
28.
Pratt
,
J.
,
Krupp
,
B.
, and
Morse
,
C.
,
2002
, “
Series Elastic Actuators for High Fidelity Force Control
,”
Ind. Rob.: Int. J.
,
29
(
3
), pp.
234
241
.10.1108/01439910210425522
29.
Kong
,
K.
,
Bae
,
J.
, and
Tomizuka
,
M.
,
2009
, “
Control of Rotary Series Elastic Actuator for Ideal Force-Mode Actuation in Human-Robot Interaction Applications
,”
IEEE/ASME Trans. Mechatronics
,
14
(
1
), pp.
105
118
.10.1109/TMECH.2008.2004561
30.
Parietti
,
F.
,
Baud-Bovy
,
G.
,
Gatti
,
E.
,
Riener
,
R.
,
Guzzella
,
L.
, and
Vallery
,
H.
,
2011
, “
Series Viscoelastic Actuators Can Match Human Force Perception
,”
IEEE/ASME Trans. Mechatronics
,
16
(
5
), pp.
853
860
.10.1109/TMECH.2011.2162076
31.
Rooney
,
J. R.
,
1990
, “
The Jump Behavior of the Humeroradial and Tarsocrural Joints of the Horse
,”
J. Equine Vet. Sci.
,
10
(
4
), pp.
311
314
.10.1016/S0737-0806(06)80017-1
32.
McGuigan
,
M. P.
,
Yoo
,
E.
,
Lee
,
D. V.
, and
Biewener
,
A. A.
,
2009
, “
Dynamics of Goat Distal Hind Limb Muscle-Tendon Function in Response to Locomotor Grade
,”
J. Exp. Biol.
,
212
(
13
), pp.
2092
2104
.10.1242/jeb.028076
33.
Minetti
,
A.
,
Ardigo
,
L.
,
Reinach
,
E.
, and
Saibene
,
F.
,
1999
, “
The Relationship Between Mechanical Work and Energy Expenditure of Locomotion in Horses
,”
J. Exp. Biol.
,
202
(
17
), pp.
2329
2338
.
34.
Kazerooni
,
H.
,
Chu
,
A.
, and
Steger
,
R.
,
2007
, “
That Which Does Not Stabilize, Will Only Make Us Stronger
,”
Int. J. Rob. Res.
,
26
(
1
), pp.
75
89
.10.1177/0278364907074472
You do not currently have access to this content.