We propose a mechanism that exploits the singular configuration in a closed-loop four-bar linkage that can produce a high impulsive torque (a high torque for a short period in time) at the start of motion and high angular velocity during the successive motion. Such characteristics make the mechanism suitable for executing with high energy efficiency a certain class of tasks, such as lifting heavy objects. In this paper, we define the singularity-based linkage mechanism (SLM), analyze its characteristics of torque generation and energy efficiency theoretically, and then confirm them experimentally by using an SLM prototype. The performance of the SLM is compared with that of a comparable size parallelogram mechanism (PM). It is shown that the energy efficiency of the SLM comes from the fact that it achieves the high acceleration of the output link in the neighborhood of the singular configuration by providing energy with low current and high voltage to the motor; whereas the typical PM requires high current to produce the comparable impulsive torque.

References

References
1.
Kawamoto
,
H.
, and
Sankai
,
Y.
,
2002
, “
Power Assist System HAL-3 for Gait Disorder Person
,” Computers Helping People With Special Needs (Lecture Notes in Computer Science, Vol. 2398),
Springer
, Berlin, Germany, pp.
196
203
.
2.
Mukai
,
T.
,
Onishi
,
M.
,
Odashima
,
T.
,
Hirano
,
S.
, and
Luo
,
Z.
,
2008
, “
Development of the Tactile Sensor System of a Human-Interactive Robot `RI-MAN'
,”
IEEE Trans. Rob.
,
24
(
2
), pp.
505
512
.10.1109/TRO.2008.917006
3.
Hirzinger
,
G.
,
Albu-Schaffer
,
A.
,
Hahnle
,
M.
,
Schaefer
,
I.
, and
Sporer
,
N.
,
2001
, “
On a New Generation of Torque Controlled Light-Weight Robots
,”
IEEE International Conference on Robotics and Automation
, Seoul, Korea, May 21–26, pp.
3356
3363
.10.1109/ROBOT.2001.933136
4.
Salisbury
,
K.
,
Townsend
,
W.
,
Ebrman
,
B.
, and
DiPietro
,
D.
,
1988
, “
Preliminary Design of a Whole-Arm Manipulation System (WAMS)
,”
IEEE International Conference on Robotics and Automation
, Philadelphia, PA, Apr. 24–29, pp.
254
260
.10.1109/ROBOT.1988.12057
5.
Brooks
,
R.
,
Aryananda
,
L.
,
Edsinger
,
A.
,
Fitzpatrick
,
P.
,
Kemp
,
C. C.
,
O’Reilly
,
U.-M.
,
Torres-Jara
,
E.
,
Varshavskaya
,
P.
, and
Weber
,
J.
,
2004
, “
Sensing and Manipulating Built-for-Human Environments
,”
Int. J. Humanoid Rob.
,
1
(
1
), pp.
1
28
.10.1142/S0219843604000022
6.
Driessen
,
B.
,
Evers
,
H.
, and
Woerden
,
J.
,
2001
, “
MANUS—A Wheelchair-Mounted Rehabilitation Robot
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
215
(
3
), pp.
285
290
.10.1243/0954411011535876
7.
Wyrobek
,
K. A.
,
Berger
,
E. H.
,
Van der Loos
,
H. F. M.
, and
Salisbury
,
J. K.
,
2008
, “
Towards a Personal Robotics Development Platform: Rationale and Design of an Intrinsically Safe Personal Robot
,”
IEEE International Conference on Robotics and Automation
(
ICRA 2008
), Pasadena, CA, May 19–23, pp.
2165
2170
.10.1109/ROBOT.2008.4543527
8.
Yoshikawa
,
T.
,
1984
, “
Analysis and Control of Robot Manipulators With Redundancy
,” Robotics Research: The First International Symposium,
MIT Press
, Cambridge, MA, pp.
735
747
.
9.
Hunt
,
K. H.
,
1983
, “
Structural Kinematics of In-Parallel-Actuated Robot-Arms
,”
ASME J. Mech., Transm. Autom. Des.
,
105
(
4
), pp.
705
712
.10.1115/1.3258540
10.
Ting
,
K.-L.
,
1992
, “
Gross Motion and Classification of Manipulators With Closed-Loop, Four-Bar Chains
,”
Int. J. Rob. Res.
,
11
(
3
), pp.
238
247
.10.1177/027836499201100306
11.
Nakamura
,
Y.
, and
Hanafusa
,
H.
,
1986
, “
Inverse Kinematic Solutions With Singularity Robustness for Robot Manipulator Control
,”
ASME J. Dyn. Syst. Meas. Control
,
108
(
3
), pp.
163
171
.10.1115/1.3143764
12.
Kumar
,
V.
, and
Gardner
,
J. F.
,
1990
, “
Kinematics of Redundantly Actuated Closed Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
2
), pp.
269
274
.10.1109/70.54745
13.
Kieffer
,
J.
,
1994
, “
Differential Analysis of Bifurcations and Isolated Singularities for Robots and Mechanisms
,”
IEEE Trans. Rob. Autom.
,
10
(
1
), pp.
1
10
.10.1109/70.285580
14.
Takaki
,
T.
, and
Omata
,
T.
,
2006
, “
100g-100N Finger Joint With Load-Sensitive Continuously Variable Transmission
,”
IEEE International Conference on Robotics and Automation
(
ICRA 2006
), Orlando, FL, May 15–19, pp.
976
981
.10.1109/ROBOT.2006.1641836
15.
Takaki
,
T.
,
Sugiyama
,
K.
,
Takayama
,
T.
, and
Omata
,
T.
,
2006
, “
Development of a 2-d.o.f. Finger Using Load-Sensitive Continuously Variable Transmissions and Ultrasonic Motors
,”
Adv. Rob.
,
20
(
8
), pp.
897
911
.10.1163/156855306777951438
16.
Jacobsen
,
S. C.
,
Knutti
,
D. F.
,
Johnson
,
R. T.
, and
Sears
,
H. H.
,
1982
, “
Development of the Utah Artificial Arm
,”
IEEE Trans. Biomed. Eng.
,
29
(
4
), pp.
249
269
.10.1109/TBME.1982.325033
17.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.10.1109/70.56660
18.
Urakubo
,
T.
,
Mashimo
,
T.
, and
Kanade
,
T.
,
2009
, “
Optimal Placement of a Two-Link Manipulator for Door Opening
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2009
), St. Louis, MO, Oct. 10–15, pp.
1446
1451
.10.1109/IROS.2009.5354076
You do not currently have access to this content.