This paper describes a new approach to the design of a lightweight robotic arm for service applications. A major design objective is to achieve a lightweight robot with desired kinematic performance and compliance. This is accomplished by an integrated design optimization approach, where robot kinematics, dynamics, drive-train design and strength analysis by means of finite element analysis (FEA) are generally considered. In this approach, kinematic dimensions, structural dimensions, and the motors and the gearboxes are parameterized as design variables. Constraints are formulated on the basis of kinematic performance, dynamic requirements and structural strength limitations, whereas the main objective is to minimize the weight. The design optimization of a five degree-of-freedom (dof) lightweight arm is demonstrated and the robot development for service application is also presented.

References

References
1.
Albu-Schäffer
,
A.
,
Haddadin
,
S.
,
Ott
,
C.
,
Stemmer
,
A.
,
Wimböck
,
T.
, and
Hirzinger
,
G.
,
2007
, “
The DLR Lightweight Robot: Design and Control Concepts for Robots in Human Environments
,”
Ind. Rob.
,
34
(
5
), pp.
376
385
.10.1108/01439910710774386
2.
Chedmail
,
P.
, and
Gautier
,
M.
,
1990
, “
Optimum Choice of Robot Actuators
,”
ASME J. Manuf. Sci. Eng.
,
112
(4), pp.
361
367
.10.1115/1.2899600
3.
Sardellitti
,
I.
,
Park
,
J.
,
Shin
,
D.
, and
Khatib
,
O.
,
2007
, “
Air Muscle Controller Design in the Distributed Macro-Mini (DM2) Actuation Approach
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2007
),
San Diego, CA
, Oct. 29–Nov. 2, pp.
1822
1827
.10.1109/IROS.2007.4399073
4.
Pettersson
,
M.
, and
Ölvander
,
J.
,
2009
, “
Drive Train Optimization for Industrial Robots
,”
IEEE Trans. Rob.
,
25
(
6
), pp.
1419
1423
.10.1109/TRO.2009.2028764
5.
Elmqvist
,
H.
,
Olsson
,
H.
,
Mattsson
,
S. E.
, and
Brück
,
D.
,
2005
, “
Optimization for Design and Parameter Estimation
,”
International Modelica Conference
,
Hamburg, Germany
, Mar. 7–8, pp.
255
266
.
6.
Zhou
,
L.
,
Bai
,
S.
, and
Hansen
,
M. R.
,
2011
, “
Design Optimization on the Drive Train of a Light-Weight Robotic Arm
,”
Mechatronics
,
21
(
3
), pp.
560
569
.10.1016/j.mechatronics.2011.02.004
7.
Roy
,
J.
, and
Whitcomb
,
L. L.
,
2004
, “
Comparative Structural Analysis of 2-DOF Semi-Direct-Drive Linkages for Robot Arms
,”
IEEE/ASME Trans. Mech.
,
4
(
1
), pp.
82
86
.10.1109/3516.752087
8.
Pil
,
A.
, and
Asada
,
H.
,
1995
, “
Rapid Recursive Structure Redesign for Improved Dynamics of a Single Link Robot
,”
ASME J. Dyn. Syst. Meas. Control
,
117
(
4
), pp.
520
526
.10.1115/1.2801109
9.
Bai
,
S.
, and
Zhou
,
L.
,
2011
, “
Design Optimization of a 5 Light-Weight Robotic Arm Under Structural Constraints
,”
24th Nordic Seminar on Computational Mechanics
,
Helsinki, Finland
, Nov. 3–4, pp.
119
123
.
10.
Zhu
,
Y.
,
Qiu
,
J.
, and
Tani
,
J.
,
2001
, “
Simultaneous Optimization of a Two-Link Flexible Robot Arm
,”
J. Rob. Syst.
,
18
(
1
), pp.
29
38
.10.1002/1097-4563(200101)18:1<29::AID-ROB3>3.0.CO;2-C
11.
Rout
,
B. K.
, and
Mittal
,
R. K.
,
2010
, “
Optimal Design of Manipulator Parameter Using Evolutionary Optimization Techniques
,”
Robotica
,
28
(3), pp.
381
395
.10.1017/S0263574709005700
12.
Shiller
,
Z.
, and
Sundar
,
S.
,
1991
, “
Design of Robotic Manipulators for Optimal Dynamic Performance
,”
IEEE International Conference on Robotics and Automation
,
Sacramento, CA
, Apr. 9–11, pp.
344
349
.10.1109/ROBOT.1991.132065
13.
Zhou
,
L.
,
Bai
,
S.
, and
Hansen
,
M. R.
,
2012
, “
Integrated Dimensional and Drive-Train Design Optimization of a Light-Weight Anthropomorphic Arm
,”
Rob. Auton. Syst.
,
60
(
1
), pp.
113
122
.10.1016/j.robot.2011.09.004
14.
Denavit
,
J.
, and
Hartenberg
,
R. S.
,
1955
, “
A Kinematic Notation for Lower Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
77
, pp.
215
221
.
15.
Fang
,
Y.
, and
Tsai
,
L. W.
,
2003
, “
Inverse Velocity and Singularity Analysis of Low-DOF Serial Manipulators
,”
J. Field Rob.
,
20
(
4
), pp.
177
188
.
16.
Yoshikawa
,
T.
,
1985
, “
Manipulability of Robotic Mechanisms
,”
Int. J. Rob. Res.
,
4
(
2
), pp.
3
9
.10.1177/027836498500400201
17.
Gosselin
,
C.
, and
Angeles
,
J.
,
1991
, “
A Global Performance Index for the Kinematic Optimization of Robotic Manipulators
,”
ASME J. Mech. Des.
,
113
(
3
), pp.
220
226
.10.1115/1.2912772
18.
Bai
,
S.
,
2010
, “
Optimum Design of Spherical Parallel Manipulators for a Prescribed Workspace
,”
Mech. Mach. Theory
,
45
(
2
), pp.
200
211
.10.1016/j.mechmachtheory.2009.06.007
19.
Harmonic Drive
, “
Engineering Data for Harmonic Drive Gears
,” Harmonic Drive AG, Limburg/Lahn, Germany, www.harmonicdrive.de/cms/upload/pdf/en/cpu_h7.pdf
20.
Norten
,
R. L.
,
2010
,
Machine Design: An Integrated Approach
,
4th ed.
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
21.
Antony
,
G. G.
, “
Rating and Sizing of Precision Low Backlash Planetary Gearboxes for Automation Motion Control and Robotics Applications
,” Neugart USA Corp., Bethel Park, PA, www.neugartusa.com/Service/faq/Gear_Rating.pdf
22.
Box
,
M. J.
,
1965
, “
A New Method of Constrained Optimization and a Comparison With Other Methods
,”
Comput. J.
,
8
(
1
), pp.
42
52
.10.1093/comjnl/8.1.42
23.
Guin
,
J. A.
,
1968
, “
Modification of the Complex Method of Constrained Optimization
,”
Comput. J.
,
10
(
4
), pp.
416
417
.10.1093/comjnl/10.4.416
24.
Kucuk
,
S.
, and
Bingul
,
Z.
,
2006
, “
Comparative Study of Performance Indices for Fundamental Robot Manipulators
,”
Rob. Auton. Syst.
,
54
(
7
), pp.
567
573
.10.1016/j.robot.2006.04.002
25.
Nielsen
,
M. B.
,
Christensen
,
S.
,
Mark
,
S. E.
, and
Peters
,
R.
, 2012, “Light-Weight Robotic Arm Serving Drink,” Aalborg University, Aalborg, Denmark, https://www.youtube.com/watch?v=yLPBrK_sjjI&feature=g-all-u
26.
Kucuk
,
S.
,
2013
, “
Energy Minimization for 3-RRR Fully Planar Parallel Manipulator Using Particle Swarm Optimization
,”
Mech. Mach. Theory
,
62
, pp.
129
149
.10.1016/j.mechmachtheory.2012.11.010
27.
Sigmund
,
O.
,
1997
, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
Mech. Struct. Mach.
,
25
, pp.
493
524
.10.1080/08905459708945415
28.
Maxon Motor, Products Catalogue 10/11
, Maxon Motor, Sachseln, Switzerland, www.maxonmotor.ch/e-paper/blaetterkatalog/pdf/complete.pdf
29.
Harmonic Drive, 2014, Harmonic Drive Technical Data, Harmonic Drive AG, Limburg/Lahn, Germany, www.harmonicdrive.de/cms/upload/German/B_Produkte/B_Units/kompl_Produktkapitel_CPU_D-E.pdf
You do not currently have access to this content.